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Abstract. For an arrangement of lines in H3, each face of the Delau-
nay cells is determined by three lines. We prove that the face associated
with three lines is the same as the face associated with the three pair-
wise common perpendiculars to those lines, except in some degenerate
circumstances.

1. Introduction

In [Prz12], we introduced the notion of Delaunay cells associated with an
arrangement of flats in hyperbolic space. Although that paper dealt with
flats of arbitrary dimension in hyperbolic space of arbitrary dimension, in
this paper, we restrict attention to one-dimensional flats (i.e. lines) in H3.

Definition 1.1. [Prz12] Given a line ` in H3, define the projection function
π : H3 → ` as π(x) is the point on ` which is closest to x. We then define the
open Delaunay cell associated with the distinct lines `1, · · · , `n (for n ≤ 4)
to be the set of points x ∈ H3 for which π1(x), · · · , πn(x) are in general
position and x lies in the relative interior of their convex hull.

We will often allow some or all of the `i to be points on ∂H3 rather than
lines. In this case, the projection function is a constant function, equal
to that particular point on ∂H3. When points on ∂H3 are allowed, the
requirement that the `i be distinct will be replaced with the requirement
that none of the `i are contained in any other of the `i.

In [Prz12], we required that the `i be disjoint lines rather than merely
distinct, and points on ∂H3 weren’t allowed. While the primary motivation
of this paper is to study the Delaunay cells from [Prz12], the main result
of this paper can be proved in some situations which weren’t relevant in
[Prz12].

Typically, one would expect the open Delaunay cell associated with n lines
to be (n− 1)-dimensional, although there are degenerate cases in which it’s
empty. Assuming the open Delaunay cell associated with the disjoint lines
`1, `2, `3, and `4 is three-dimensional, its boundary will be two-dimensional.
One portion of the boundary will be the open Delaunay cell associated with
three of the lines. We refer to such a portion of the boundary as a face.
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Any point x in the face associated with `1, `2, and `3 satisfies the criterion
that π1(x), π2(x), and π3(x) are in general position and x lies in the relative
interior of their convex hull. This face can be extended to a surface, which
we call the coplanar surface.

Definition 1.2. Let each of `1, `2, and `3 be a line in H3 or point on ∂H3,
with the requirement that none of the `i is contained in any other of the `i.
We define the coplanar surface of `1, `2, and `3 to be the set

{x ∈ H3 |x, π1(x), π2(x), and π3(x) are coplanar}

Figure 1. A face (left) and a coplanar surface (right). `1,
`2, and `3 are solid lines. Pairwise common perpendiculars
are dashed lines

One can easily see that `1, `2, and `3 all lie on the coplanar surface (or

if they’re points on ∂H3, the extension of the coplanar surface to H3). Let
`⊥ij be the common perpendicular to `i and `j . We regard a point on ∂H3 as
being perpendicular to any line that contains it. For example, if two distinct
lines share a common endpoint, then the common endpoint is their common
perpendicular. The common perpendicular to two distinct points on ∂H3 is
the line which connects them. Then the restriction that none of the `i are
contained in any of the other `i serves the purpose of guaranteeing that the
pairwise common perpendiculars exist.

If they are lines, `⊥12, `
⊥
23, and `⊥31 also lie on the coplanar surface (since if

x is on `⊥ij , then x, πi(x), and πj(x) are collinear). In the case that any of

the `⊥ij is a point on ∂H3, it won’t lie on the coplanar surface, but it will lie

on the extension of the coplanar surface to H3.
Except in degenerate cases, `1, `2, `3, `

⊥
12, `

⊥
23, and `⊥23 are six distinct lines

which form a right-angled (nonplanar) hyperbolic hexagon, which happens
to be the boundary of the face associated with the lines `1, `2, and `3.
Degenerate cases include: some of the “lines” being points on ∂H3, the
face being empty, some of the `i intersecting each other, or some of the `⊥ij
intersecting each other.

If we were given only the right-angled hyperbolic hexagon, it would be
impossible to tell which of the three sides were the original three lines and
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which of the three sides were the pairwise common perpendiculars. In par-
ticular, the pairwise common perpendiculars to `⊥12, `

⊥
23, and `⊥31 are (in some

order) `1, `2, and `3. Then the coplanar surface of `⊥12, `
⊥
23, and `⊥31 would

contain the same six lines. Thus, it’s natural to ask whether the coplanar
surface of `⊥12, `

⊥
23, and `⊥31 is the same as the coplanar surface of `1, `2, and

`3.

Theorem 3.2. Let each of `1, `2, and `3 be a line in H3 or a point on
∂H3, none of which contains any of the others. Then their coplanar surface
is contained in the coplanar surface of their pairwise common perpendic-
ulars. If none of the pairwise common perpendiculars contain any other
of the pairwise common perpendiculars, then the two coplanar surfaces are
identical.

Theorem 3.6. Let each of `1, `2, and `3 be a line in H3 or a point on
∂H3, none of which contains any of the others. Let `⊥12, `⊥23, and `⊥31 be their
pairwise common perpendiculars. If none of the `⊥ij contain any other of

the `⊥ij, then the face associated with `1, `2, and `3 is the same as the face

associated with `⊥12, `⊥23, and `⊥31.

One could ask whether the same theorems hold for flats in higher di-
mensional hyperbolic space, but the general answer seems to be “no”. In
three-dimensional Euclidean geometry, pairs of lines don’t always have a
unique common perpendicular line. Avoiding these exceptional cases, it’s
very simple to prove that analogous theorems hold. Another natural ques-
tion to ask is “since `1, `2, and `3 determine the same coplanar surface as
`⊥12, `

⊥
23, and `⊥31, are there any other triples of lines which determine that

coplanar surface”? We expect to address this in a future paper.
The motivation is to study degenerate circumstances that can arise in De-

launay decompositions, such as multiple Delaunay faces having two-dimensional
overlap. We also suspect that the Delaunay faces can provide the 2-handles
of a Mom structure [GMM10, GMM09, Mil09], although this would likely
require ruling out various exceptional circumstances.

In Section 2, we compute (up to a scalar multiple) the projection of the
origin onto the common perpendicular to two lines. In Section 3, we prove
the main results of the paper.

2. Projection onto the Common Perpendicular

Throughout the paper, we represent H3 in the Klein model. The Klein
model is D3 = {x ∈ R3 | |x| < 1}. Lines and planes are accurately repre-
sented as lines and planes, but angles and distances are distorted. Rotation
about the origin is a hyperbolic isometry. Other hyperbolic isometries are
generally not as simple to describe.

A plane has a unit normal vector n (in a Euclidean sense, and chosen to
point away from the origin). Then the equation of the plane can be written
as x·n = C for some constant C. The pole of the plane is the point n

C2 , which
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lies outside of D3. A line is perpendicular to a plane (in a hyperbolic sense)
if and only if it passes through the plane’s pole. In the case that C = 0, the
plane has no pole. In that case, the plane and line are perpendicular in a
hyperbolic sense if and only if they are perpendicular in a Euclidean sense.

Definition 2.1. We will represent a line ` ∈ D3 as a vector c ∈ D3 and a
unit vector d ∈ R3. The vector c is the point on ` which is closest to 0, so
is π(0). The vector d is a direction vector for the line `. Then c ·d = 0 and
d · d = 1.

We will also represent a point c ∈ ∂D3 as the vector c and a unit vector
d. We choose the unit vector d so c ·d = 0, but otherwise the choice of d is
arbitrary. We include d merely for notational consistency between lines in
D3 and points on ∂D3.

As a plane has a pole, so does a line. The pole of a line is another line,
passing through the point c

|c|2 with direction c×d. A plane is perpendicular

to a line if and only if the plane contains the line’s pole. If c = 0, then the line
has no pole. In this case, a line and plane are perpendicular in a hyperbolic
sense if and only if they are perpendicular in a Euclidean sense.

Proposition 2.2. Let each of `1 and `2 be a line in D3 or a point on ∂D3

(described by vectors ci and di as in Definition 2.1). If `1 and `2 have a
common perpendicular line `⊥12 which lies in the x-y plane and is parallel (in
a Euclidean sense) to the y-axis, then we may write di and ci as

di =
1√

1− (1− t2i ) cos2 α cos2 βi

(sinα cosβi,−ti cosα cosβi, sinβi)

ci = pi − (pi · di)di
where

pi = (cosα, ti sinα, 0)

for i ∈ {1, 2}, and some |ti| ≤ 1, 0 < α < π, and 0 ≤ βi < π. Assuming
`1 6= `2, the ordered pairs (t1, β1) and (t2, β2) are not equal.

Proof. If the common perpendicular `⊥12 to `1 and `2 lies in the x-y plane
and is parallel to the y-axis, then it crosses the x-axis somewhere within
D3. Let that point be (cosα, 0, 0) with 0 < α < π. Then `⊥12 is the line
x = cosα, z = 0. Each of `1 and `2 will intersect `⊥12 at a point pi with
y-coordinate between − sinα and sinα. Let the y-coordinate of pi be ti sinα
for i ∈ {1, 2} and |ti| ≤ 1. Then `i lies in a plane which is (hyperbolically)
perpendicular to `⊥12 at the point pi. Any plane perpendicular to `⊥12 must
contain the pole of the line `⊥12, the line x = secα, y = 0 (unless α = π

2 ).
The equation of such a plane is (secα−cosα)y = −(x− secα)ti sinα, which
simplifies to y sinα = ti(1− x cosα). Note that this final form for the plane
is correct even if α = π

2 , since in that case `⊥12 is the y-axis and the plane

must be perpendicular to `⊥12 in even a Euclidean sense.
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The direction vector di must be orthogonal to the normal vector of the
plane. The normal vector to the plane is (ti cosα, sinα, 0) so di is a scalar
multiple of (sinα cosβi,−ti cosα cosβi, sinβi) for some βi ∈ [0, 2π). Since
the sign of di is irrelevant, we may choose βi ∈ [0, π). Scaling so di is a unit
vector, we see that

di =
1√

1− (1− t2i ) cos2 α cos2 βi

(sinα cosβi,−ti cosα cosβi, sinβi)

Line `i passes through the point pi with direction di. On `i, the closest
point to the origin is ci = pi − (pi · di)di.

If the ordered pairs (t1, β1) and (t2, β2) are equal, then `1 and `2 both
pass through the same point p1 = p2 and have the same direction vectors,
so aren’t distinct. �

Remark 1. By rotating D3 about the origin, most pairs of distinct lines can
be transformed into lines of the form in the proposition. However, if `1 and
`2 share an endpoint on ∂D3, then they lack a common perpendicular line.
The proposition does not produce any such pairs of lines, even if α = 0.

Lemma 2.3. With di and pi as in the previous proposition, and i and j in
{1, 2},

(1) pj · di =
(1−titj) cosα sinα cosβi√
1−(1−t2i ) cos2 α cos2 βi

(2) 1− |pi|2 = (1− t2i ) sin2 α
(3) The y-coordinate of (pi · di)pi + (1− |pi|2)di is zero.
(4) pj · (pi − pj) = (titj − t2j ) sin2 α

(5) dj · (pj − pi) =
(titj−t2j ) cosα sinα cosβj√

1−(1−t2j ) cos2 α cos2 βj

Proof. Each of these claims can be verified through a short computation. �

Definition 2.4. If each of `1 and `2 is a line in D3 or a point on ∂D3

(represented as vectors ci and di), define

a = (|c2|2−c1·c2)c1+(|c1|2−c1·c2)c2+(1−|c1|2)(c2·d1)d1+(1−|c2|2)(c1·d2)d2

We will prove that the projection of 0 onto `⊥12 is a positive scalar multiple
of a. First, we need some technical results.

Proposition 2.5. With ci and di as in Proposition 2.2, the y-coordinate of
a is 0.
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Proof. Rather than deal with the entire expression for a, we start by reor-
ganizing the terms in (|c2|2 − c1 · c2)c1 + (1− |c1|2)(c2 · d1)d1.

(|c2|2 − c1 · c2)c1 + (1− |c1|2)(c2 · d1)d1

= (c2 · (c2 − c1))c1 + (1− |c1|2)(c2 · d1)d1

= (c2 · (p2 − p1 + (p1 · d1)d1 − (p2 · d2)d2)) c1 + (1− |c1|2)(c2 · d1)d1

= (c2 · (p2 − p1))c1 + (c2 · ((p1 · d1)d1 − (p2 · d2)d2))c1

+ (1− |c1|2)(c2 · d1)d1

= (c2 · (p2 − p1))c1 + (c2 · ((p1 · d1)d1))c1 + (1− |c1|2)(c2 · d1)d1

= (c2 · (p2 − p1))c1 + (c2 · d1)
(
(p1 · d1)c1 + (1− |c1|2)d1

)
= (c2 · (p2 − p1))c1

+ (c2 · d1)
(
(p1 · d1)(p1 − (p1 · d1)d1) + (1− |p1|2 + (p1 · d1)

2)d1

)
= (c2 · (p2 − p1))c1 + (c2 · d1)

(
(p1 · d1)p1 + (1− |p1|2)d1

)

By Lemma 2.3, the y-coordinate of (p1 · d1)p1 + (1 − |p1|2)d1 is zero, so
the y-coordinate of (|c2|2 − c1 · c2)c1 + (1 − |c1|2)(c2 · d1)d1 is the same
as the y-coordinate of (c2 · (p2 − p1))c1. Similarly, the y-coordinate of
(|c1|2 − c1 · c2)c2 + (1− |c2|2)(c1 · d2)d2 is the same as the y-coordinate of
(c1 ·(p1−p2))c2. Thus, the y-coordinate of a is the same as the y-coordinate
of (c2 · (p2 − p1))c1 + (c1 · (p1 − p2))c2.

When nonzero, p2 − p1 points in the y-direction, so we can verify that
the y-coordinate of a is 0 by computing a · (p2 − p1) = (c2 · (p2 − p1))(c1 ·
(p2−p1)) + (c1 · (p1−p2))(c2 · (p2−p1)) = 0. If p2−p1 = 0, then t1 = t2.
By a continuity argument, since the y-coordinate of a is 0 when t1 6= t2, it’s
also 0 when t1 = t2. �

Proposition 2.6. With ci and di as in Proposition 2.2, the z-coordinate of
a is 0.

Proof. First, we compute the z-coordinate of (|c2|2−c1 ·c2)c1+(1−|c1|2)(c2 ·
d1)d1. Since c1 = p1 − (p1 · d1)d1, and p1 lies in the x-y plane, the z-
coordinate of (|c2|2 − c1 · c2)c1 + (1 − |c1|2)(c2 · d1)d1 is the same as the
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z-coordinate of

d1

(
−(|c2|2 − c1 · c2)(p1 · d1) + (1− |c1|2)(c2 · d1)

)
= d1

(
−(|c2|2 − (p1 · c2) + (p1 · d1)(d1 · c2))(p1 · d1)

+(1− |p1|2 + (p1 · d1)
2)(c2 · d1)

)
= d1

(
(−|c2|2 + (p1 · c2))(p1 · d1) + (1− |p1|2)(c2 · d1)

)
= d1

(
(−|p2|2 + (p2 · d2)

2 + (p1 · p2)− (p2 · d2)(p1 · d2))(p1 · d1)

+(1− |p1|2)((p2 · d1)− (p2 · d2)(d1 · d2))
)

= d1

(
(p2 · (p1 − p2))(p1 · d1) + (1− |p1|2)(p2 · d1)

+(p2 · d2)(p1 · d1)((p2 − p1) · d2)− (1− |p1|2)(p2 · d2)(d1 · d2)
)

Now, we compute the z-coordinate of this, using Lemma 2.3. The z-coordinate
is

sinβ1√
1− (1− t21) cos2 α cos2 β1

(
(t1t2 − t22) sin2 α(1− t21) cosα sinα cosβ1√

1− (1− t21) cos2 α cos2 β1

+
(1− t21) sin2 α(1− t1t2) cosα sinα cosβ1√

1− (1− t21) cos2 α cos2 β1

+
(1− t22) cosα sinα cosβ2(p1 · d1)(t1t2 − t22) cosα sinα cosβ2

(1− (1− t22) cos2 α cos2 β2)

− (1− t21) sin2 α(1− t22) cosα sinα cosβ2(d1 · d2)√
1− (1− t22) cos2 α cos2 β2

)

Factoring out common terms, this becomes

=
sinβ1 cosα sin2 α√

1− (1− t21) cos2 α cos2 β1

(
(1− t21) sinα cosβ1((t1t2 − t22) + (1− t1t2))√

1− (1− t21) cos2 α cos2 β1

+
(1− t22) cosβ2(p1 · d1)(t1t2 − t22) cosα cosβ2

(1− (1− t22) cos2 α cos2 β2)

− (1− t21)(1− t22) sinα cosβ2(d1 · d2)√
1− (1− t22) cos2 α cos2 β2

)
=

(1− t22) sinβ1 cosα sin2 α√
1− (1− t21) cos2 α cos2 β1

(
(1− t21) sinα cosβ1√

1− (1− t21) cos2 α cos2 β1

+
cosβ2(p1 · d1)(t1t2 − t22) cosα cosβ2

(1− (1− t22) cos2 α cos2 β2)
− (1− t21) sinα cosβ2(d1 · d2)√

1− (1− t22) cos2 α cos2 β2

)
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Continuing to substitute expressions from Lemma 2.3 and simplify gives

=
(1− t22) sinβ1 cosα sin2 α√
1− (1− t21) cos2 α cos2 β1

(
(1− t21) sinα cosβ1√

1− (1− t21) cos2 α cos2 β1

+
cosβ2(1− t21) cosα sinα cosβ1(t1t2 − t22) cosα cosβ2

(1− (1− t22) cos2 α cos2 β2)
√

1− (1− t21) cos2 α cos2 β1

− (1− t21) sinα cosβ2((sin
2 α+ t1t2 cos2 α) cosβ1 cosβ2 + sinβ1 sinβ2)

(1− (1− t22) cos2 α cos2 β2)
√

1− (1− t21) cos2 α cos2 β1

)
=

(1− t21)(1− t22) sinβ1 cosα sin3 α

1− (1− t21) cos2 α cos2 β1

(
cosβ1 +

cos2 β2 cos2 α cosβ1(t1t2 − t22)
(1− (1− t22) cos2 α cos2 β2)

− cosβ2((sin
2 α+ t1t2 cos2 α) cosβ1 cosβ2 + sinβ1 sinβ2)

1− (1− t22) cos2 α cos2 β2

)
=

(1− t21)(1− t22) sinβ1 cosα sin3 α

1− (1− t21) cos2 α cos2 β1

(
cosβ1 −

cos2 β2 cos2 α cosβ1t
2
2

1− (1− t22) cos2 α cos2 β2

− cosβ2(sin
2 α cosβ1 cosβ2 + sinβ1 sinβ2)

1− (1− t22) cos2 α cos2 β2

)
=

(1− t21)(1− t22) sinβ1 cosα sin3 α

1− (1− t21) cos2 α cos2 β1

(
cosβ1 − cosβ1 cos2 α cos2 β2

1− (1− t22) cos2 α cos2 β2

− sin2 α cosβ1 cos2 β2 + cosβ2 sinβ1 sinβ2
1− (1− t22) cos2 α cos2 β2

)
=

(1− t21)(1− t22) sinβ1 cosα sin3 α

1− (1− t21) cos2 α cos2 β1

(
cosβ1 − cosβ1 cos2 β2 − cosβ2 sinβ1 sinβ2

1− (1− t22) cos2 α cos2 β2

)
=

(1− t21)(1− t22) sinβ1 cosα sin3 α

1− (1− t21) cos2 α cos2 β1

(
cosβ1 sin2 β2 − cosβ2 sinβ1 sinβ2

1− (1− t22) cos2 α cos2 β2

)
=

(1− t21)(1− t22) sinβ1 sinβ2 cosα sin3 α sin(β2 − β1)
(1− (1− t21) cos2 α cos2 β1)(1− (1− t22) cos2 α cos2 β2)

That was the z-coordinate of (|c2|2 − c1 · c2)c1 + (1 − |c1|2)(c2 · d1)d1.
Similarly, we can compute the z-coordinate of (|c1|2 − c1 · c2)c2 + (1 −
|c2|2)(c1 ·d2)d2, which will be the same, except the sin(β2−β1) will become
sin(β1 − β2). Since sin is an odd function, the total z-coordinate of a is
0. �

Proposition 2.7. If each of `1 and `2 is a line in D3 or a point on ∂D3

and neither `1 nor `2 contains the other, then their common perpendicular
passes through the origin if and only if a = 0.

Proof. If a = 0, then a · c1 = a · c2 = 0.

0 = a · c1 = (|c2|2 − c1 · c2)|c1|2 + (|c1|2 − c1 · c2)(c1 · c2) + (1− |c2|2)(c1 · d2)
2

= (|c1|2|c2|2 − (c1 · c2)2) + (1− |c2|2)(c1 · d2)
2
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Since (|c1|2|c2|2 − (c1 · c2)2) and (1− |c2|2)(c1 · d2)
2 are both nonnegative,

we have that |c1|2|c2|2− (c1 · c2)2 = 0 and (1−|c2|2)(c1 ·d2) = 0. Similarly,
from a · c2 = 0, we see that (1− |c1|2)(c2 · d1) = 0.

If c1 = c2 = 0, then lines `1 and `2 intersect at the origin, so their
common perpendicular passes through the origin. Thus, assume without
loss of generality that c1 6= 0. From |c1|2|c2|2 − (c1 · c2)2 = 0, we see that
Span(c1, c2) is one dimensional (i.e. a line passing through 0). This line
is perpendicular to `1. If `2 is a point on ∂D3, then `2 is an endpoint of
Span(c1, c2) ∩D3 so is perpendicular to Span(c1, c2). If `2 is a line in D3,
then 1− |c2|2 6= 0, so c1 · d2 = 0. Then Span(c1, c2) is perpendicular to `2.
Thus Span(c1, c2) is the common perpendicular to `1 and `2. This completes
one direction of the proof.

Now assume that the common perpendicular to `1 and `2 passes through
the origin. Then c1 and c2 are linearly dependent, so c2 · d1 = c1 · d2 = 0.
There is some vector v and scalars c1 and c2 such that ci = civ.

a = (|c2|2 − c1 · c2)c1 + (|c1|2 − c1 · c2)c2 + 0 + 0

= (c22 − c1c2)|v|2c1v + (c21 − c1c2)|v|2c2v
= 0

�

Proposition 2.8. With ci and di as in Proposition 2.2, the x-coordinate
of a has the same sign as cosα.

Proof. Proposition 2.7 proves the result in the case that α = π
2 , so assume

α 6= π
2 .

The x-coordinate of a is a continuous function of the βi and ti. The
common perpendicular to `1 and `2 doesn’t pass through the origin. Then
Proposition 2.7 verifies that the x-coordinate of a is not zero, unless `1 and
`2 are identical, in which case either (t1, β1) = (t2, β2) or t1 = t2 = ±1.
Fixing α, we may continuously vary the ti and βi without changing the sign
of the x-coordinate of a, as long as we avoid the conditions (t1, β1) = (t2, β2)
or t1 = t2 = ±1.

Without loss of generality, we may then assume that t1 = 1 and t2 = −1.
Then c1 = (cosα, sinα, 0) and c2 = (cosα,− sinα, 0). It is then easy to
compute that a = 2(1 − cos 2α)(cosα, 0, 0). Since 0 < α < π, we have
completed the proof. �

Proposition 2.9. Given two distinct lines `1 and `2 in D3 (represented as
vectors ci and di), if they have a common endpoint, then it is a positive
scalar multiple of a.

Proof. Let p ∈ ∂D3 be the common endpoint and let the direction vector
of line `i be di. The sign of di is irrelevant, so we are free to choose di so
p · di > 0. The closest point on `i to 0 is ci = p− (p · di)di. With this, we
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compute that

|c2|2 − (c1 · c2) = c2 · (c2 − c1)

= c2 · ((p · d1)d1 − (p · d2)d2)

= (p · d1)(c2 · d1)

Also, 1−|c1|2 = 1− (|p|2− (p ·d1)
2) = (p ·d1)

2. Similarly, we can compute
that |c1|2 − (c1 · c2) = (p · d2)(c1 · d2) and 1− |c2|2 = (p · d2)

2. Then a is

(|c2|2 − c1 · c2)c1 + (|c1|2 − c1 · c2)c2
+(1− |c1|2)(c2 · d1)d1 + (1− |c2|2)(c1 · d2)d2

= (p · d1)(c2 · d1)c1 + (p · d2)(c1 · d2)c2

+ (p · d1)
2(c2 · d1)d1 + (p · d2)

2(c1 · d2)d2

= (p · d1)(c2 · d1)(c1 + (p · d1)d1) + (p · d2)(c1 · d2)(c2 + (p · d2)d2)

= (p · d1)(c2 · d1)p + (p · d2)(c1 · d2)p

We can compute that the scalar coefficient of p in the above expression
is

(p · d1)(c2 · d1) + (p · d2)(c1 · d2)

= (p · d1)((p · d1)− (p · d2)(d1 · d2)) + (p · d2)((p · d2)− (p · d1)(d1 · d2))

= (p · d1)
2 + (p · d2)

2 − 2(p · d1)(p · d2)(d1 · d2)

≥ (p · d1)
2 + (p · d2)

2 − 2(p · d1)(p · d2)

= ((p · d1)− (p · d2))
2

≥ 0

By Proposition 2.7, a 6= 0. Thus, a is a positive scalar multiple of p, so p
is also a positive scalar multiple of a. �

Theorem 2.10. Let each of `1 and `2 be a line in D3 or a point on ∂D3

(represented as vectors ci and di), neither of which contains the other. Let
`⊥12 be their common perpendicular. The projection of 0 onto `⊥12 is a positive
scalar multiple of the vector

a = (|c2|2−c1·c2)c1+(|c1|2−c1·c2)c2+(1−|c1|2)(c2·d1)d1+(1−|c2|2)(c1·d2)d2

Proof. Proposition 2.9 proves the theorem in the case that `⊥12 is a point on
∂D3. Thus, we may assume that `⊥12 is a line. Without loss of generality,
we may rotate D3 so `⊥12 lies in the x-y plane and is parallel to the y-axis.
Propositions 2.5 and 2.6 prove that a lies along the x-axis. The projection of
0 onto `⊥12 is (cosα, 0, 0). Proposition 2.8 then verifies that a and (cosα, 0, 0)
point in the same direction. �

Remark 2. It is worth noting that the expression in Theorem 2.10 is a
polynomial expression in the entries of the vectors ci and di. In higher
dimensions, it doesn’t seem to be the case that the projection of 0 onto
`⊥12 is a scalar multiple of such a simple expression. We speculate that is
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the reason why the main results of this paper can’t be extended to higher
dimensions.

3. Proof of Duality

In this section, we prove the main results of the paper, that the coplanar
surface of three distinct lines is (usually) the same as the coplanar surface
of their pairwise common perpendiculars. A similar result applies to faces.

Proposition 3.1. Let each of `1, `2, and `3 be a line in D3 or a point on
∂D3 (represented as vectors ci and di as in Definition 2.1), none of which
contains any of the others. If c1, c2, and c3 are linearly dependent, then
a12, a23, and a31 are also linearly dependent, where aij is computed using
Definition 2.4 with lines `i and `j.

In particular, if the three vectors c1, c2, and c3 are linearly dependent,
but no two of them are linearly dependent, then we can find nonzero numbers

λi and µi such that
3∑
i=1

µici = λ3a12 + λ1a23 + λ2a31 = 0 and λiµi doesn’t

depend on i.

Proof. Without loss of generality, rotate D3 about the origin so the vectors
ci all lie in the x-y plane. Then we may write the vectors ci and di as
ci = (ri cos θi, ri sin θi, 0) and di = (− sin θi sinφi, cos θi sinφi, cosφi), where
ri ∈ [0, 1], θi ∈ [0, 2π), and φi ∈ [0, π). In what follows, we use cyclic indices
mod 3.

The vector (|ci+1|2 − (ci · ci+1))ci + (|ci|2 − (ci · ci+1))ci+1 simplifies as

(r2i+1 − riri+1 cos(θi+1 − θi))ci + (r2i − riri+1 cos(θi+1 − θi))ci+1

= riri+1((ri+1 − ri cos(θi+1 − θi))(cos θi, sin θi, 0)

+ (ri − ri+1 cos(θi+1 − θi))(cos θi+1, sin θi+1, 0))

= riri+1(ri+1 sin(θi+1 − θi)(sin θi+1,− cos θi+1, 0)

+ ri sin(θi − θi+1)(sin θi,− cos θi, 0))

= riri+1 sin(θi+1 − θi)((ci+1 − ci)× k)

where k = (0, 0, 1). If we let λi = ri sin(θi − θi+2) sin(θi+1 − θi), then

3∑
i=1

λi+2

(
(|ci+1|2 − (ci · ci+1))ci + (|ci|2 − (ci · ci+1))ci+1

)
=

 3∏
j=1

rj sin(θj+1 − θj)

 3∑
i=1

((ci+1 − ci)× k)

=

 3∏
j=1

rj sin(θj+1 − θj)

(( 3∑
i=1

(ci+1 − ci)

)
× k

)
= 0
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Now we compute
3∑
i=1

λi+2

(
(1− |ci|2)(ci+1 · di)di + (1− |ci+1|2)(ci · di+1)di+1

)
3∑
i=1

λi+2

(
(1− |ci|2)(ci+1 · di)di + (1− |ci+1|2)(ci · di+1)di+1

)
=

3∑
i=1

(1− |ci|2) (λi+2(ci+1 · di) + λi+1(ci+2 · di)) di

=

3∑
i=1

(1− |ci|2) (λi+2ri+1 sinφi sin(θi+1 − θi) + λi+1ri+2 sinφi sin(θi+2 − θi)) di

=

3∑
i=1

(1− |ci|2)ri+1ri+2 sinφi(sin(θi+2 − θi+1) sin(θi+3 − θi+2) sin(θi+1 − θi)

+ sin(θi+1 − θi+3) sin(θi+2 − θi+1) sin(θi+2 − θi))di

=
3∑
i=1

(
(1− |ci|2)ri+1ri+2 sinφi sin(θi+2 − θi+1) sin(θi+1 − θi)·

(sin(θi − θi+2) + sin(θi+2 − θi))di
)

= 0

Then
3∑
i=1

λi+2ai,i+1 is

3∑
i=1

λi+2

(
(|ci+1|2 − (ci · ci+1))ci + (|ci|2 − (ci · ci+1))ci+1

+(1− |ci|2)(ci+1 · di)di + (1− |ci+1|2)(ci · di+1)di+1

)
= 0

As long as at least one of the λi is nonzero, we’ve proved that a12, a23,
and a31 are linearly dependent. We still need to check the degenerate cases
in which λ1 = λ2 = λ3 = 0.

If two or more of the ri are 0, then without loss of generality we may
assume that r1 = r2 = 0, so c1 = c2 = 0. Then a12 = 0 so a12, a23, and a31

are linearly dependent.
If two or more of the ri are nonzero, then without loss of generality we

may assume that r1 6= 0 and r2 6= 0. Then from λ1 = λ2 = 0, we have
that sin(θ1 − θ3) sin(θ2 − θ1) = sin(θ2 − θ1) sin(θ3 − θ2) = 0. This produces
two possibilities: either sin(θ2 − θ1) = 0 or sin(θ1 − θ3) = sin(θ3 − θ2) = 0.
In the second case, we can still conclude that sin(θ2 − θ1) = 0, so in either
case, we have that sin(θ2 − θ1) = 0. Then c1 and c2 are nonzero scalar
multiples of each other. Then (|c2|2 − (c1 · c2))c1 + (|c1|2 − (c1 · c2))c2 = 0
and c2 · d1 = c1 · d2 = 0, so a12 = 0. Then a12, a23, and a31 are linearly
dependent.
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Now we prove the remaining claim in the theorem. If no two of the ci are
linearly dependent, then let µi = ci+1 × ci+2 · k where k = (0, 0, 1). Then
3∑
i=1

µici = 0. Further µi = ri+1ri+2 sin(θi+2 − θi+1) 6= 0.

Note that

λiµi = ri sin(θi − θi+2) sin(θi+1 − θi)ri+1ri+2 sin(θi+2 − θi+1)

=
3∏
j=1

rj sin(θj+1 − θj)

so doesn’t depend on i. If no two of the ci are linearly dependent, then none
of the ci is 0 and no two of the θi differ by an integer multiple of π. Then
λiµi 6= 0, so the λi and µi are all nonzero. �

Theorem 3.2. Let each of `1, `2, and `3 be a line in H3 or a point on
∂H3, none of which contains any of the others. Then their coplanar surface
is contained in the coplanar surface of their pairwise common perpendic-
ulars. If none of the pairwise common perpendiculars contain any other
of the pairwise common perpendiculars, then the two coplanar surfaces are
identical.

Proof. We represent H3 as D3 in the Klein model. Represent `i by vectors
ci and di as in Definition 2.1. Let p be any point on the coplanar surface
of `1, `2, and `3. By performing a hyperbolic isometry, we may assume that
p is the origin. Then πi(p) = ci. Since p is on the coplanar surface of `1,
`2, and `3, we have that 0, c1, c2, and c3 are coplanar, so c1, c2, and c3
are linearly dependent. By Proposition 3.1, a12, a23, and a31 are linearly
dependent. By Theorem 2.10, the projections of p onto the three pairwise
common perpendiculars are scalar multiples of a12, a23, and a31 respectively.
Thus, p is on the coplanar surface of the pairwise common perpendiculars.
This proves that the coplanar surface of `1, `2, and `3 is contained in the
coplanar surface of their pairwise common perpendiculars.

To prove the second part of the theorem, note that if none of the pairwise
common perpendiculars contain any other of the pairwise common perpen-
diculars, then the pairwise common perpendiculars also satisfy the hypothe-
ses of the theorem.

The pairwise common perpendiculars to the pairwise common perpen-
diculars are `1, `2, and `3. Applying the portion of the theorem that we’ve
already proved, the coplanar surface to the pairwise common perpendiculars
is contained in the coplanar surface to the pairwise common perpendiculars
to the pairwise common perpendiculars. �

Remark 3. Although a point which is coplanar with its projections onto the
`i is also coplanar with its projections onto the pairwise common perpen-
diculars, the two planes aren’t usually the same. One can readily compute
that even if c1 and c2 lie in the x-y plane, a12 generally won’t.
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Proposition 3.3. Let each of `1, `2, and `3 be a line in D3 or a point on
∂D3, none of which contains any of the others. Then the associated face
does not include any points on any of the `i or `⊥ij.

Proof. Given any point in the face, we may perform a hyperbolic isometry
to move the point to the origin. Thus, without loss of generality, we prove
that if the origin is on one of the `i or the `⊥ij , then it isn’t in the face.

Suppose that 0 is on one of the `i, without loss of generality `1. Then
π1(0) = 0. The only way π1(0) can lie in the relative interior of the convex
hull of π1(0), π2(0), and π3(0) is if that convex hull is one-dimensional.
However, in that case, π1(0), π2(0), and π3(0) aren’t in general position.
Thus, 0 isn’t in the face.

Suppose that 0 is on one of the `⊥ij , without loss of generality `⊥12. Then

0, π1(0), and π2(0) are collinear. Again, the only way that π1(0) can lie
in the relative interior of the convex of hull of π1(0), π2(0), and π3(0) is if
that convex hull is one-dimensional. Again, that would require that π1(0),
π2(0), and π3(0) aren’t in general position. Thus, 0 isn’t in the face. �

Proposition 3.4. Let each of `1, `2, and `3 be a line in D3 or a point on
∂D3 (represented as vectors ci and di as in Definition 2.1), none of which
contains any of the others. If 0 lies on their coplanar surface, but not on
any of the `i or `⊥ij, then the affine hull of π1(0), π2(0), and π3(0) is two-

dimensional, so there are unique (up to scaling) numbers µ1, µ2, µ3 such

that
3∑
i=1

µici = 0

Proof. Since 0 lies on the coplanar surface, π1(0) = c1, π2(0) = c2, and
π3(0) = c3 are linearly dependent.

If the dimension of Span(c1, c2, c3) is zero, then c1 = c2 = c3 = 0, so all
three of the `i pass through the origin, violating the hypotheses.

Suppose that the dimension of Span(c1, c2, c3) is one. If any of the ci were
0, that would mean that one of the `i passed through the origin. Thus, the
ci are all nonzero. Then they are scalar multiples of each other, so each of
the ci is perpendicular to all of the dj . Thus, Span(c1, c2, c3) is the common
perpendicular to all three of the `i, violating the hypotheses.

Thus, Span(c1, c2, c3) is two-dimensional. The µi exist and are unique up
to scaling. �

Proposition 3.5. Let each of `1, `2, and `3 be a line in D3 or a point on
∂D3, none of which contains any of the others. Then the point 0 is in the
associated face if and only if there are positive constants µi (unique up to

scaling) such that
3∑
i=1

µiπi(0) = 0 and 0 is not on any of the lines `i or `⊥ij.
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Proof. For three vectors v1, v2, and v3 in R3 whose affine hull is two-
dimensional and passes through 0, 0 is in the relative interior of their con-
vex hull if and only if there are positive numbers µ1, µ2, µ3 such that

0 =
3∑
i=1

µivi.

The point 0 is in the face if and only if π1(0), π2(0), and π3(0) are in
general position and 0 lies in the relative interior of their convex hull. Then
0 is on the face if and only if the affine hull of π1(0), π2(0), π3(0) is two-
dimensional, and 0 lies in this affine hull, and there are positive numbers

µ1, µ2, µ3 such that 0 =
3∑
i=1

µiπi(0).

Suppose that 0 is on the face. Then by Proposition 3.3, 0 doesn’t lie on
any of the `i or the `⊥ij . By Proposition 3.4, the affine hull of π1(0), π2(0),

π3(0) is two-dimensional. Since 0 lies in the relative interior of the convex
hull of π1(0), π2(0), and π3(0), there are positive constants µi (unique up

to scaling) such that
3∑
i=1

µiπi(0) = 0. This completes one direction of the

proof.

Suppose now that there are positive constants µi such that
3∑
i=1

µiπi(0) = 0

and 0 is not on any of the lines `i or `⊥ij . Since
3∑
i=1

µiπi(0) = 0, the vectors

π1(0), π2(0), π3(0) are linearly dependent, and thus 0 lies on the coplanar
surface. By Proposition 3.4, the affine hull of π1(0), π2(0), and π3(0) is
two-dimensional. Since the µi are all positive, 0 must lie in the interior of
the convex hull of π1(0), π2(0), and π3(0). �

Theorem 3.6. Let each of `1, `2, and `3 be a line in H3 or a point on
∂H3, none of which contains any of the others. Let `⊥12, `⊥23, and `⊥31 be their
pairwise common perpendiculars. If none of the `⊥ij contain any other of

the `⊥ij, then the face associated with `1, `2, and `3 is the same as the face

associated with `⊥12, `⊥23, and `⊥31.

Proof. Let p be a point on the face associated with `1, `2, and `3. Without
loss of generality, we may assume that p is at the origin in the Klein model.
Since p is a point on the face, it’s also a point on the coplanar surface to
`1, `2, and `3. Then Theorem 3.2 verifies that p is a point on the coplanar
surface to `⊥12, `

⊥
23, and `⊥31. From Propositions 3.3 and 3.5, we have that p is

not on any of the lines `i or `⊥ij and that there are positive constants µi such

that
3∑
i=1

µiπi(0) = 0. The µi are unique up to scaling, so may be assumed

to be the same as the µi produced by Proposition 3.1. Since p is not on
any of the `i or `⊥ij , Proposition 3.1 provides nonzero constants λi such that
λ3a12 +λ1a23 +λ2a31 = 0 and λiµi doesn’t depend on i. Then the λi are all
of the same sign. Without loss of generality, we may assume that the λi are
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all positive. Since the projection of 0 onto `⊥ij is a positive scalar multiple of

aij , by Proposition 3.5, we have that p lies on the face associated with `⊥12,

`⊥23, and `⊥31.
Repeat the argument starting with the face associated to `⊥12, `

⊥
23, and

`⊥31. �
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