PACKING DISKS ON A TORUS

ANDREW PRZEWORSKI

ABSTRACT. We determine the densest packing of two congruent disks
on a torus. The maximal density varies depending on the ratio of the
disk radius to the length of a closed geodesic on the torus.

1. INTRODUCTION

Ball packing is one of the classic topics in mathematics. Of course, many
of the simple questions were answered long ago, leaving only the hard ques-
tions and the overlooked questions. Here, we address what we believe to be
one of the overlooked questions which has recently gained some relevance in
the study of hyperbolic 3-manifolds.

We will investigate a specific kind of disk packing on a torus. A cylinder
covers a torus, so a disk packing on a torus may be lifted to a disk packing
on a cylinder. The cylindrical problem has previously been considered. See
[F'T62] and [BFT64].

A torus may be regarded geometrically as a quotient R%/A of the Eu-
clidean plane by a rank two lattice A. However, the specifics of the global
geometry depend on the lattice A. The local geometry of the Euclidean
plane passes down to the torus, so we may talk about disks within the
torus, though if the radius is too large, the disk would not embed. One
simple packing problem would be to find the largest radius disk that may
be placed within a torus of a given area, or conversely, to find the smallest
area torus that can contain a disk of a given radius. The ratio of the area
of the disk to the area of the torus is called the density of the packing. The
solution to each of the above problems is based on the hexagonal packing of
disks in the plane, which is the maximum density disk packing in the plane.
Letting A be the corresponding lattice, one constructs a torus on which it is
possible for disk packing to achieve the same density as the hexagonal disk
packing does in the plane, \/Lﬁ

The problem becomes more interesting when we impose restrictions on
the geometry of the torus. The restriction we will consider here is that the
torus has a closed geodesic of length 1. This corresponds to requiring that
A contain a primitive element of length 1. For some disk radii, like %, the
hexagonal packing will still satisfy this restriction, but for most disk radii,
the hexagonal packing is no longer possible.
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In the study of hyperbolic 3-manifolds, one often deals with simple closed
geodesics. About such a geodesic, one can find an embedded tube (topo-
logically a solid torus, geometrically the set of all points within some fixed
distance of the geodesic). The boundary of such a tube is a torus which
happens to bear the usual Euclidean geometry. Except in some elementary
situations, there will be a maximal radius for such a tube. If we choose a
maximal radius embedded tube, then there will be a point on its boundary
at which the tube abuts itself. In fact, this point is actually two boundary
points which have become identified. Based on various geometric consider-
ations, one can find an object (ideally a convex object, or even a disk) on
the tube boundary about each of these points. One then wants to use the
area of this object to place a lower bound on the area of the tube boundary,
which would place a lower bound on the tube’s volume, which would provide
geometric information about the manifold. See [GM98], [Prz03], [GMMO01],
and [MMO03].

Accordingly, we ask the following question:

Question 1. Given r > 0, among all tori containing a closed geodesic of
length 1, what is the smallest possible area for a torus which contains two
nonoverlapping disks of radius r?

In order to answer this question, we will need to determine both the lattice
(i.e. the shape of the torus) and how the two disks are positioned on the
torus relative to each other. The key result (minus the details) is:

Theorem 2.11. Depending on the disks’ radius, the optimal packing is of
one of two types, called optimal lattice packings and equilateral packings.

For each of these two types of packings, we then determine the maximal
density.

Theorem 3.1. For optimal lattice packings of disks of radius r, the maximal
m—2m2—2n2
2(m?—n?)

density is  max ———— where f(m,n,r) =
|7 (mymyr) | <3 AV 1= F2 (monr) (m, m )
and n are relatively prime integers. There is an exceptional case when r =

In this case, a hexagonal packing is possible, with density \/Lﬁ
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Theorem 4.1. For equilateral packings of disks of radius r, the maximal

density is max —T— where ged(m,n) =1 and
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There is one exception. If r = =, a hexagonal packing is possible.

These upper bounds are, unfortunately, not expressed in a simple form.
However, their computation is a finite problem (and not even a particularly
large one), and thus easily handled by a computer.
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2. LocATING THE OPTIMAL PACKINGS

Although we stated the problem in terms of tori, it is more convenient to
work in the Euclidean plane. When we lift the torus to its universal cover,
the Euclidean plane, each disk on the torus will lift to a lattice packing of
disks. Thus, for the two disks, we will have two offset lattice packings of
nonoverlapping congruent disks. The set of disk centers for such a packing
will be called a double-lattice.

Definition 2.1. Given a rank 2 lattice A, a A-double lattice consists of all
points in AU (w+A) for some choice w ¢ A. A double lattice is a A-double
lattice, for any choice of A. Placing congruent nonoverlapping disks centered
at the points of a double lattice results in a double lattice packing of disks.

We must also define the density of such a packing.

Definition 2.2. Given a A-double lattice packing of disks, choose a fun-
damental domain D for A. Further, find the subset E of D consisting of

all points in D which lie in any of the disks. The density of the packing is
Area(E)
Area(D) "

With these definitions, we may now restate Question 1.

Question 2. For disks of radius r > 0, among all double lattice packings
for which the lattice contains a primitive element of length 1, what is the
largest possible density?

What we want to do is to determine an upper bound on density provided
we have information about the radius of the disks in the packing. However,
it will be easier to start out by reversing the question. Thus, we first ask
the following question:

Question 3. Given a specific lattice A, what is the largest r for which
nonoverlapping disks of radius r may be centered at the points of a A-double
lattice?

Changing the scale of the double lattice will simply change r by the same
proportionality factor. It is convenient to scale the double lattice so as to
make 1 a primitive element. Further, it is notationally convenient to regard
the Euclidean plane as C.

Theorem 2.3. Given a lattice A, by scaling and rotating if necessary, we
may assume that one of the generators is 1 and the other is a number z
satisfying |Re(z)| < %, |z| > 1, and Im(z) > 0. Under these circumstances,

|z] IZill)

the largest radius for a A-double lattice packing of disks is %min(l7 2T ()

where the + has the opposite sign from Re(z).

Proof. By scaling and rotating, we may assume that A is generated by 1 and
some number v in the upper half-plane. From here, we resort to the action
of the modular group PSL(2,Z) on the upper half-plane. PSL(2,Z) acts on
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the upper half-plane by linear fractional transformations. In the upper half-
plane model of the hyperbolic plane, PSL(2,Z) is the group of orientation
preserving isometries. It is known that PSL(2,Z) can be generated by a
11 . . 0
01 ) and an inversion ( 10
equivalence classes). Given a basis {1, v} for A, the translation corresponds
to changing the basis to {1, v+ 1} and the inversion corresponds to changing
the basis to {1, —%} (which still has the same shape as A, although on
a different scale). Thus, the action of PSL(2,Z) can be used to choose
a basis {1,z} where z is in a fundamental domain for the action. The
standard choice for such a fundamental domain is {z € C : [Re(z)| < 3, |z| >
1, and Im(z) > 0}.

Thus, we may assume that A is generated by 1 and z where |Re(z)| < %,
|z| > 1 and Im(z) > 0. One consequence of this is that 1 is the shortest
element in A, so we may place nonoverlapping congruent disks at the points
of A as long the radius of the disks is no more than % However, we also
need to place disks at points w + A, for some choice of w € C — A. We
must determine the optimal choice for w so as to maximize the disk radius.
Of course, we may choose to place w in the parallelogram bounded by 1
and z. The optimal location for w would be the point(s) which maximizes
the distance to the nearest lattice point. Because of the restrictions on z,
the nearest lattice point will be one of the four vertices of the parallelogram
bounded by 1 and z. Finding the optimal location for w is then a simple
geometry problem. We find that the optimal location for w is for it to be
equidistant from at least three of the four vertices of the parallelogram.

If Re(z) > 0, then the three vertices 0,1, and z are a correct choice.
fro)
further that |w — (z + 1)| > |w|. This means the distance from a point in
w + A to its nearest neighbor in A is exactly |w|. We already know that
the shortest distance between two elements of A (or two elements of w4 A)
is 1. Thus, the shortest distance between two elements of A U (w + A) is

z||z—1
)

If Re(z) < 0, reflect the lattice across the imaginary axis to obtain a
lattice generated by 1 and —z. Then the shortest distance between two

elements of AU (w + A) is min(1, %) = min(1, |;|h|§£|;1)|) O

translation ( ) (or more formally, their

One can quickly compute that |w| = |w — 1] = |w — z| = and

min(1, |w|) = min(1

The preceding theorem computed the maximal radius for a A-double lat-
tice packing of disks, but after having first performed scaling and rotations
(some of which occurred during the various changes of lattice generators)
that were not explicitly described. While rotation would not affect the disk
radius, scaling would. In order to explicitly compute the disk radius in a
fully general situation, we would need to keep track of the scalings we per-
form. To do this, we’d need to determine which elements of PSL(2,Z) were
used to take a given lattice to the type described in the preceding theorem.
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Definition 2.4. Given a lattice A generated by 1 and v, we let r(v) be the
mazimal radius for nonoverlapping disks placed at the points of any A-double
lattice (meaning that among all possible choices for w, we choose the one
which maximizes the disk radius).

First though, it will be convenient to change our view of how the PSL(2, Z)
action tiles the upper half-plane. The standard fundamental domain for this
action is not really the best choice for our purposes. Using that tile, there is
no clear connection between the geometry of a particular tile and the man-
ner in which r(v) is evaluated within that tile. Thus, we switch to a tiling
of the upper half-plane by ideal triangles.

Let T'(a,b,c) be the ideal triangle with vertices a, b, and ¢. The vertices
are not included in T'(a,b,c), but the edges are. We will choose 7(0, 1, c0)
as our primary point of reference. The action of PSL(2,Z) tiles the upper
half-plane with copies of T'(0, 1, 00), although some nontrivial elements of
PSL(2,Z) fix individual tiles.

Lemma 2.5. Within T(0,1,00), r(v) = $ min(1,|v], |[v — 1], |‘2'L|1:'(;;|)

Proof. Let A be the portion of 7'(0,1,00) which lies within the standard
PSL(2,Z) domain. Then there are six distinct hyperbolically congruent
(although sometimes reflected) copies of A lying within 7°(0,1,00). See
Figure 1.

Al

A

FiGURE 1.

We've already computed r(v) = 1 min(1, |‘2'L|;'(;;|) within A.
If we let Ay be the copy of A lying immediately below A, then to com-
pute r(v) within Ay, we must determine which element of PSL(2,Z) carries

Ay into the standard PSL(2,Z) fundamental domain. Points in A; have
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nonnegative real part, positive imaginary part, have length at most 1, and
are at least 1 unit away from the point 1. If v € Ay, then —% has, nonpos-
itive real part, positive imaginary part, length at least 1, and real part at
least —%. Such a point lies within the standard PSL(2,Z) fundamental do-
main. However, the inversion changed the scale of the lattice by 2} fﬁ,Ctl?r of
|v|. Thus, r(v) = |[v|r(=1) = |‘2'| min (1, [kl 21||( V-I;1|) = |‘2'| min (1, 72'@';'1 )=

IvI?
. —1
L min(]v], 7|‘2'L|;'(V)|).
Letting Ay be the copy of A immediately below Ay, we have that points

in Ay have real part at most %, positive imaginary part, are at most 1

unit from 1, and are at least % unit from % For a point v € A,, the

point —< 4 1 (inversion followed by translation) will have length at least

1, posmve imaginary part, real part at most %, and nonnegative real part.

27
Then —; + 1 is in A. However, the inversion changed the scale by |v|, so
lv—=1] 1

| =g+ |- +1-1] . T T
r(v) = [vlr(=+ +1) = lmin(1, W) = Blmin(1, 2'1%0(';')') =
. -1
§ min(|v], i
Note that for v € A, [v| > L and |[v—1| > 1 so r(v) = $ min(1, |‘2'L|1:'( ;') =
Tmin(1,|v|, [v—1], |‘2'IIL:'( ;') Similarly, within either Ay or Az, 1 > |v| and
1 1
|[v—1] > |v|sor(v)= %mm(|v|7 |‘2'h|;'( )|) = %mln(l |vl], |v— 1], |‘2'h|;'( )|)

To compute r(v) in the rest of 7'(0, 1, 00), we note that the lattice gen-
erated by {1,v} has the same shape and scale as the lattice generated by
{1,1=v},sor(v)=r(l-v).

O

Knowing how r(v) behaves within 7'(0,1,00) is enough to allow us to
compute it elsewhere. From here on, an ideal triangle T'(a, b, ¢) is assumed to
be a PSL(2,Z) translate of T'(0, 1, 00), rather than just being any arbitrary
ideal triangle. This places some restrictions on a, b, and ¢, although the
exact nature of the restrictions will not be relevant.

Lemma 2.6. Within T'(a,b,0), r(v) = $ min(1,|v —al, |[v -], %)

Proof. This is easily verified, as any such ideal triangle, if translated far
enough to the right or left becomes T'(0, 1, c0). a

Lemma 2.7. If a,b,c € R, then within T'(a, b, c),

v —al|lv=>||v—¢|

r(v) :min(01|V—(Z|,CQ|V—b|7CS|V—C|7C4| Im(v) )

Jor some positive constants C1, Cs, Cs, and Cyq which depend on only a, b,
and c.
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Proof. Any ideal triangle under consideration can be carried to 7'(0, 1, c0)
by the action of PSL(2,Z). That group is generated by inversions and
translations, so it is sufficient to show three things:
(1) That the form of the indicated expression is invariant under trans-
lation.
(2) That the form of the indicated expression is invariant under inversion
when none of a, b, and ¢ is 0.
(3) That when one of a, b, and ¢ is 0, inversion carries the indicated
form to an expression of the type given in Lemma 2.6.
Translation by 1 carries T'(a,b,¢) to T(a+ 1,0+ 1,c+ 1) and performs no
scaling. Suppose that r(v) = min(Cy|v — (a+1)|,Co|v — (b+1)], Cs|v — (c+
1), Cy v= (aH)HVIng[()j)l)HV (CH)') within T'(¢ + 1,0+ 1,¢+ 1). Then within
(a/7 b7 C)7
r(v) = r(v+1)
= min(Cy|lv+1-(a+1),Colv+1—(b+1),Csv+1—(c+1),
o= ot v+ = (b D] 1= (e 1)

Im(v 4 1)
v—al|l|lv=>5||v—¢

Im(v) )

= min(Cy|v — a|,Cq|v —b|,C5|v — c|,C’4|

This verifies (1).

To verify (2), we assume that within T(—1

1
_a7 b
lv— |[v=(=g)Iv=(=¢)I .
(~1)1,Calv = (=) 1, Colv = (1)1, €, PEEEEDI=ED)  Given
lattice generated by 1 and v, inversion carries it to a lattice generated by 1

and —l. The two lattices have the same shape, but the scale differs by a
factor of |v|. Then if v € T'(a, b, c),

—%), r(v) = min(Cq|v —

1
') = -3
. 1 1 1 1 1 1
= |v|min(Cy |-=+ =|,Ca|-=+ |, Ca|—=+ —|,
vV a v b c
1,1 1,1 1,1
-+ |-+l -+ =
04 v a|| v 1b|| v c|)
v v o1y -1
= ——1 ——1 ‘__1 a c
win(Cy ¥~ 1] ¢ [} ez tlE=d =)
_ min(—1|v |02| |_| e, Cy |V—a||V—b||V—C|)‘
|al 1] || |abe| Im(v)

As this expression again has the desired form, we have verified (2).
Verifying (3) is similar to verifying (2). O

Now that we know the nature of r(v), we can perform some computations
to verify three technical lemmas.



8 ANDREW PRZEWORSKI

Lemma 2.8. Within a given ideal triangle, r(v) is differentiable except
on the curves along which there is a change in the identity of the minimal
Sfunction.

Proof. The function r(v) is evaluated by finding the minimum of several
functions, which are of the form %, Clv —al, %, or C%.
These functions are all obviously differentiable in the upper half-plane.
Thus, the only possible points of nondifferentiability for r(v) are points
where two (or more) of the functions are simultaneously the minimum. Fig-
ure 2 indicates where within 7'(0, 1, c0) each function is the minimum and
where the points of nondifferentiability are. The curve on which r(v) is

nondifferentiable is indicated by the thick lines. O

1

R

v| |v-1
2lm(v)

v V-1

FIGURE 2.

Lemma 2.9. r(v) is an increasing function of Im(v) and is strictly increas-
ing except when r(v) = 3.

Proof. We need to check that |v — a, %, and % are

all strictly increasing functions of Im(v) in the appropriate portions of the
upper half-plane. For |v — a|, this is obvious.

The function % is relevant within 7'(a,b,o0), for @ and b con-
secutive integers. For notational convenience, let v = z 4+ ¢y. It would

be sufficient to verify that aa_y (((x_a)2+y2;§($_b)2+y2)) > 0. The function
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is obviously not constant on any interval of y values, so showing that the
derivative is nonnegative is enough to guarantee strict monotonicity.

0 ((z=a)?+y)((x =02 +y")\ _  (2—a)*(@—0b)?
a_y( . )_ 2 . 12y
= 294—(90—“)2(90_(’)2
y3
N %(92—(w—a)(w—b))(y2+(w—a)(w—’ﬁ)

Within the ideal triangle T'(a,b,00), y > 0, x is between a and b, and
(v — )24 42 > L Then y% > 0 and (z —a)(z —b) <0, so it’s sufficient
to check that y* + (z — a)(z — b) > 0.

Fre-aE-b) > {0 e aE -
= %—L—Zb)Z—I—ab
1 (a=0)?
T4 4
=0

That completes the proof for the second type of function.

The third type of function %

angle T'(a,b,c). Without loss of generality, assume a < b < ¢. Within

is relevant within the ideal tri-

c—a)? a —a)?

T(a,bie)y > 0, (0= S 4y < EFE (- oty 42 > O51
and (z — 29)2 4 42 > (e=b) Then ¢ < z < cand for a < z < b
2 Y 4 3

? (6_4(1)2 —(JU—a-Iz_b)? = —(z —a)(x — b) > 0 while for b < 2 < ¢,

y* 2
y2 > (c=0)? (x B b_|2__c)2 — _(x _ b)(ac _ C) > 0.
Again, it would be sufficient to verify that

0 (((w —a)’ +y) (=0’ +y*)((z — o)* +92)) > 0.

dy y?

,.;;
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Then for a <z < b,

0 (((96 —a)’ +y*)((x =0+ y*)((z = 0)* + 92))

8_y 2

)
z % (—2(z —)’(@ = 0)> + (¢ — ) (z = b)’[(¢ — @)* + (¢ = b)* + (2 — ©)]
—(z — a)*(z — b)*(x — ¢)?)
R gﬂx‘waw—w%a—MQ
> 0.
The computation for b < 2 < ¢ is nearly identical. 0

Lemma 2.10. On the level sets of the function r(v) = r(z + iy) the points
with the lowest y values are points of nondifferentiability.

Proof. Recall that r(v) is computed by determining the minimum of several
functions. When exactly one of the functions is the minimum, r(v) is differ-
entiable. When two (or more) functions are simultaneously the minimum,
r(v) is not differentiable. This means that within any 7'(«,b,c), there are
four different regions in which r(v) is differentiable. Where these regions
meet each other, r(v) is not differentiable. We can compute the level sets

within each of the four zones of differentiability within each ideal triangle.
[v—al|v—b]

2Im(v)
it easy to locate the lowest point on the level set.

We have to do more work to verify the claim for a function of the form
[v—a||v=b| [v—C]
Im(v)
so let f(v) = |V_a|2(1|;zj§2|v_c|2. Let v. = z + 4y. Then a level curve is a
set of the form f(z,y) = C. We may regard y as a function of z along this
curve. Differentiating with respect to =, fi + foy’ = 0. If the lowest point
on the curve is a point of differentiability, then y’ would have to be 0 there.
Differentiating again, fiy +2f12y’ + f22(¥/)* + f2y” = 0. At the lowest point,
y' = 0 and y” > 0 which reduces the equation to fi; + foy” = 0. We know
that f; is nonnegative so fi; must be nonpositive. We shall show that this

can’t happen.
It would be enough to show that y%fi; > 0 in T(a,b,c).

The level sets of functions of the form |v—a or are circles, making

. We may square the function without affecting the level sets,

Phn = [ a4 (0 ) (- 0 )]
= 6y4—|—4y2 [(x — a)2 + (2 — b)2—|— (x — 0)2—|—2($ —a)(xz —b)
+2(z =b)(e—c)+2(z—a)(x — )]+ 2(z — a)2(ac — b)2
+2(z = b)*(z — ) +2(z — a)*(z — ¢)* + 8(z — a)(z — b)(z — ¢)?
+8(z —a)(z — b)*(z — ) + 8(z — a)*(z — b)(z — ¢)
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Note that the coefficient of y? simplifies to 4(3z — a — b — ¢)?, so is non-
negative. Asin the proof of the previous lemma, for ¢ <z < b < ¢, we may
assume that y? > —(z — a)(z — b) > 0. Then for a < x < b,

v > 6($—(Z)2($—b)2—4($—a)($—b) [(x—a)2+(ac—b)2

+2(z — a)*(x = 0)* 4+ 2(x — b)*(x — ¢)* + 2(x — a)* (v — ¢)*
+8(z — a)(z — b)(z — ¢)* + 8(z — a)(z — b)*(z — ¢)
+8(z — a)*(z — b)(z — ¢)

T —a) )

+4(z — a)(x — b)(z — ¢)*
= 8(a+b- 20)363 +2(4c(2a+ 2b+¢) — 5(a + b)z)av2
+4(a+b)((a+b)* — cla+ b+ 2¢))x + 2c*(a + b)* — 4ab(a® + b*)

At this point, we have established that y?fi; is bounded below by a cubic
polynomial in z. The coefficient of z® is negative and the derivative of the
polynomial is 0 at z = “T‘"b and z = “"’Sﬂ In the interval [a, b], the absolute
minimum of the polynomial will occur either at the leftmost critical point,
“T‘"b or at the right endpoint, b. Evaluating the polynomial at either of these
points produces a positive number, so the polynomial is positive throughout
the interval [a,b]. The polynomial is a lower bound for y2fi(, so y%f1; is
positive whenever a < x < b.

Repeating the same computations for b < z < ¢ completes the proof. O

These lemmas will allow us to restrict the possible maximally dense pack-
ings of disks of a given radius. Recall that when trying to locate optimal
packings, we will require that there be a primitive element of length 1 in the
lattice.

Theorem 2.11. For a given disk radius r’ the highest density double lattice
packing is of one of two types:

(1) A lattice packing generated by two vectors uy and ug of length 2r'.
There is an element of unit length of the form muy 4+ nug where
either m and n are relatively prime odd integers or 5 and 5 are
relatively prime integers one of which is even. Such a double lattice
will be called an optimal lattice.

(2) A double lattice AU (w + A) where A is generated by a vector uy of
length 2r' and some other vector us of length at least 2r'. The A-
double lattice is a union of A and u1e¢™/® + A. The point uie'™/3 is
equidistant from 0 and the two generators of A. There is a primitive
element of length 1 in A. Such a double lattice will be called an

equilateral lattice.
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Proof. As usual, assume that A is generated by 1 and some vector v. We
know that r(v) is an increasing function of Im(v) and clearly r(v) ap-
proaches 0 as Im(v) does. Choose some A-double lattice packing of disks of
radius r’. We might as well assume that the disks are placed optimally, i.e.
that even if ' < r(v), the disks are centered at the same points as we could
place disks of radius r(v).

Ifr' = 1 , then the optimal double lattice packing is the hexagonal packing,
which actually satisfies both aspects of the theorem. Thus, we may assume
r < % If ' < r(v), then by decreasing Im(v) slightly, we could still pack
the disks of radius r’, and yet the area of the fundamental domain for A
(equal to Im(v)) would decrease, thereby increasing density. Thus, we may
assume that ' = r(v).

At this point, we compute the density of the packing. Within a funda-
mental parallelogram for A will lie portions of disks, totaling to two whole

disks. The parallelogram has area Im(v), so the density is 2171;5(\/,))2. Thus, for

a given value of 1/, the highest density will occur at the point on the level
set ' = r(v) with the smallest imaginary part. We have already shown that
at such a point, r(v) is nondifferentiable.

Returning to the region A used in the proof of Lemma 2.5, we see that
the only points of nondifferentiability within A lie either on the boundary of

[v]lv—1]
2Im(v)
ity anywhere in the upper half-plane will be PSL(2,Z) translates of these

(or their reflections about the imaginary axis), and thus the double lattices
will still have the same shapes, although different sizes.

The only portion of the boundary of 7'(0, 1, co0) that lies within A is on the
line Re(v) = 0. It’s easy to see that if Re(v) = 0 and Im(v) > v/3 then r(v)

has the locally constant value % so is in fact differentiable. Hence, we assume

that Im(v) < v/3. The lattice A is a rectangular lattice. The second copy
of the lattice is offset by w = 4%, Then AU (w+A) is also a lattice, which

can be generated by H'T" and 1_7" Asr(v) = %min(L v, |v — 1], |‘2'L|;’ 1|)

the fact that v is pure imaginary and of restricted size indicates that r( ) =
l1—v| V| |1+V|. Then 1iv both have length 2r’. This information can then
be Carrled to the rest of the upper half-plane allowing us to say that the
double lattice AU (w + A) is in general a lattice generated by two vectors
uy and ug of length 2r’. Both u; and ug are in w + A. The points in the
double lattice will be of the form mu; + nus where m and n are integers.
Among these points, the ones which fall into A will be the ones for which m
and n are either both odd or both even (since A is generated by uj 4+ uz and
u; — uz). The primitive (in A) element of unit length is then of the form
muy + nus where m and n are either both odd or both even. The fact that
it’s primitive in A implies that if m and n have a common factor (other than
1), then dividing by the common factor must produce a vector which is not

T(0,1,00) or on the curve 1 = All other points of nondifferentiabil-
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in A. Thus, the only possible common factor is 2 and in this case % and
can’t both be odd. This provides the first type of optimal double lattice.
The second kind of nondifferentiability within A arises on the curve 1 =

|‘2'L|;'(;;|. For such values of v, we find that w = €™/ and r(v) = 1. The
points 0, 1, and v are all at a distance of 1 from w. Carrying this information
from A to the rest of the upper half-plane establishes the second type of

optimal double lattice packing. O

3. OrTIMAL LATTICE PACKINGS

Here, we will be studying the first of the two types of double lattice
packings mentioned in Theorem 2.11, the optimal lattice packings.

Theorem 3.1. For optimal lattice packings of disks of radius r, the maximal

density is  max  ——L——— where f(m,n,r) =
T sy WIS ) Jmmr)

and n are relatively prime integers. There is an exceptional case when r =

In this case, a hexagonal packing is possible, with density \/Lﬁ

) and m
1
i

Proof. Let the two generators of the lattice be u; and ug, each of which
has length 2r. Let the angle between u; and u; be #. Then the area
of a fundamental parallelogram for the lattice is 4r?sin §. Within such a
parallelogram lie portions of disks totaling one whole disk, and thus of area
7nr?. Then the density is To maximize density, we then need to
minimize sin 6.

As the lattice provides a packing of nonoverlapping disks of radius r,

T
4sin@*

there can’t be any lattice elements shorter than 2r. If sinf < @, then
u; — uy would be too short, so there is a lower bound on sin . We could
stop here, but the result would then conclude only that density is at most
\/%, something we already knew.

There is an element muy +nuy which has length 1. Computing the length

of this vector, 4r?(m?*+n?4+2mn cos#) = 1. Then (unless mn = 0), we have

12 2

that cos@ = % Recall that either m and n are relatively prime odd
integers or 7 and I are relatively prime integers, one of which is even. The
restrictions on m and n can be expressed more simply through a change of

variables m = m/+n’, n = m’—n’ where m’ and n’ are relatively prime. Then
L—Q N2 _9(n)2
cosf = 4T22((7rf'7;2)—(n')(:)) = f(m',n’,r). We're trying to minimize sin 6 while

maintaining sin § > @, which corresponds to maximizing |f(m’,n',r)| =

| cos 8] while maintaining | f(m/,n’,r)| < 1.
Note that if m or n is large then |cosf| = mitn > s %, so finding the

2|mn|

desired maximum is a finite problem.
In the exceptional case in which n (respectively m) is 0, we have that muy

is of length 1. Since n is even, m must also be even. Thus, § and % are
relatively prime and of different parities. Since 5 is still even, 5 must be
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an odd number which is relatively prime to 0. Thus, |m| = 2 and u; must
have length %, S0 = i. We quickly determine that a hexagonal packing is
possible in this case. It is more natural to regard this case as an equilateral
packing. O

We include a graph of the maximal density as a function of % (Figure

3). Note that (aside from a lone point at r = %), there is a gap for \/Lz_s <

r < % Recall that optimal lattice packings arose when level curves for

the function r(v) intersected with the nondifferentiabilities of r(v). For
L L

75 <‘r <75 all'such nondifferentiabilities occur at points corresponding
to equilateral packings.

0.9

0.88

0.86

0.84

0.82

U 5 \/ 10 15 20

FiGURE 3.

4. EQUILATERAL PACKINGS

Here, we study the second type of packing mentioned in Theorem 2.11,
the equilateral packings. We may rotate the double lattice so as to make
u; = 2r.

Theorem 4.1. For equilateral packings of disks of radius r, the maximal

density is max Ti0mmy where ged(m,n) =1 and

gi(m,n,r)ZQ\/g g (mon.r

25— (m(m+n) = 35)?

2 1
133 r
(m +mn+47’2)\/_:|:(n—|—2m)\/
2(n3 4+ m?n + mn?)

2(n? +m? + mn)

g9+ (m7 n, T‘) =
There is one exception. If r = %, a hexagonal packing is possible.

Proof. The distance from 2re’™/3 to 0, u; = 2r, and uy is 2r. Thus, the

V3

second generator is of the form uy; = 2ret™/3 + 2re?. If sinf < 2, then
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one of uy & uy is within 2r of the point 2re'™/3, making a disk packing
impossible. Thus we may assume that sin 8 > @

We can readily compute that a fundamental parallelogram for A has area
47‘2(@ + sin ). This parallelogram contains portions of disks totaling two
whole disks, and thus area 27r2. Then the density is m.
density, we need to minimize sinf. Using the lower bound we’ve already
established, we could again prove that density is at most \/Lﬁ However,
we’d like to do better.

There is a primitive element mu; + nuy of length 1. Then |2mr + nr +
2nrcosf + inrv/3 + 2inrsin 6| = 1 and ged(m,n) = 1. Determining the
length of this vector, m? 4 n2(2 + cos 6 + +/3sin 0) + mn(l+ 2cosf) = ﬁ.
Some algebra then verifies that (if n # 0)

To maximize

oy SE 7))

4(n3 + m?n 4+ mn?)

(m?+2n? + mn — 5)V3
4(n? 4+ m? 4+ mn)

sinf = —

We can now compute /3 4 2sin#, which is what’s relevant for density.

(7712—|—mn—|—ﬁ)\/§i ) \/f—j—(m(m‘l'")—ﬁ)z
2(n? 4+ m? 4+ mn) (r+2m) 2(n3 4+ m?n + mn?)

Again, we note that finding the maximum is a finite problem, for if m or

\/§—|— 2sinf =

n is large and sin @ > @, the equation involving the length of the vector
becomes
i m? + n2(2—|— cosf + /3 sin 8) + mn(1l+ 2cos)
”
Il _

V2

In the exceptional case n = 0, we have that muy is a primitive of length

1. Then |m| =1 and u; (which is of length 2r) has length 1. Thus, r = 1,

and we get the hexagonal packing. It is more natural in this case to regard

m? 1
> m?+3n? - 2lmn| = T—I—nQ—I—( In]v2)? > 7

this as an optimal lattice packing, not an equilateral packing. O
Again, we include a graph of the density as a function of % (Figure 4).
We point out that there is a gap in the graph for \/% <r< % The cause

of this gap is similar to the cause of the gap in Figure 3.
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