DENSITY OF TUBE PACKINGS IN HYPERBOLIC SPACE

ANDREW PRZEWORSKI

ABSTRACT. Given a hyperbolic manifold M and an embedded tube of
radius r about some geodesic, we determine an upper bound on the
percentage of the volume of M occupied by the tube.

1. INTRODUCTION

Packing problems have long been a topic of interest. Traditionally, ef-
forts had been focused on Euclidean space, but as interest in hyperbolic
space has grown, many of the Euclidean problems have been translated into
the hyperbolic arena, in which the problems are almost always vastly more
complicated.

The particular packing problem of interest here is a hyperbolic version of
packing congruent right circular cylinders in Euclidean space. In Euclidean
space, two equivalent ways to define a right circular cylinder are as the set
of all points within a fixed distance of a given line or as the union of all
lines passing perpendicularly through a given disk. In hyperbolic space,
these two concepts are different. We will use the word tube in the former
situation and the phrase right circular cylinder in the latter situation. Using
this terminology, we are then investigating packings of congruent tubes in
hyperbolic space.

Density is perhaps the primary focus in any investigation of packings.
Unfortunately, density can be somewhat difficult to define in hyperbolic
space, especially when one is dealing with objects of infinite volume. We will
simplify the issue by dealing with only a certain class of packings, although
the result would likely follow in more general settings, assuming one defined
density properly.

Our main result is an upper bound on the density of symmetric packings
of congruent tubes of radius r in hyperbolic space. We produce a means of
computing the upper bound in arbitrary dimensions, and develop an explicit
formula in dimension three. There is no reason to believe that our bounds
are sharp, as we make a number of estimates along the way. We note that for
the corresponding problem in three-dimensional Euclidean space, there is a

sharp bound of % [BK90]. In H?, there is a prior result [MMO0a], which

provides an upper bound for very large radius tubes and is asymptotically
sharp. The result we develop here works well for moderate radius tubes.
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However, for small radius tubes, our upper bound on density approaches
1, not the Euclidean upper bound \/% or the suspected hyperbolic limiting

case of zero density. A further result [Prz02] deals with the small radius case.
This later paper also includes an analysis of densities in a large number of
known manifolds.

In section 7, we also produce various applications to the study of small
volume hyperbolic three-manifolds.

2. DIRICHLET DOMAINS FOR TUBE PACKINGS

Defining the density of a packing is often complicated. Since our applica-
tions for tube packings all concern tubes in finite volume manifolds, we will
simply ignore the complications by dealing with only symmetric packings.

Definition 2.1. A symmetric packing of tubes in H"™ is a collection of
nonoverlapping congruent tubes subject to the condition that the collection
of tubes is preserved by the action of some discrete group T' C Isom(H")
where H" /T is a finite volume manifold. The density of the packing is the
percentage of the volume of this manifold which is occupied by the projection
of the tubes.

Although our definition of density involves a manifold, we do not want
to have to determine the manifold to determine density. For our purposes,
it will be easier to deal with regions lying in hyperbolic space. Thus we
consider one specific fundamental domain for the manifold.

Definition 2.2. The Dirichlet domain of a tube T in a symmetric packing
is the set of all points which are closer to the axis of T than to the axis of
any other tube in the packing.

As in the case of Dirichlet domains for sphere packings, the boundary
of the Dirichlet domain will consist of n — 1 dimensional manifolds (called
faces) which are equidistant from two tubes. The point on a given face which
lies on the common perpendicular to the two corresponding tubes is referred
to as the center of the face. We note that some faces might not contain a
center.

The Dirichlet domain of a tube will, of course, not be a finite volume
object since it will contain the tube itself and the tube is of infinite length.
Again, resorting to the symmetry, there is some action by translation along
the tube, and this action will preserve the Dirichlet domain. This allows us
to consider not the entire Dirichlet domain, but just some finite portion of
it.

Definition 2.3. A fundamental Dirichlet domain for a packing is a funda-
mental domain for the action of I' N Stab(T") on a Dirichlet domain. We
require that a fundamental Dirichlet domain have a limited type of convez-
ity, specifically, any line segment perpendicular to the axis of T with one
endpoint on the axis of T and the other on the boundary of the Dirichlet
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domain will either lie entirely within the fundamental Dirichlet domain or
intersect it in at most a point on the axis of T.

A fundamental Dirichlet domain, of course, will have the same volume as
the quotient manifold H"/T.

Our approach to placing an upper bound on the density of the tube pack-
ing will be to place a lower bound on the volume of the region lying within
the fundamental Dirichlet domain but outside the tube. We do this in two
steps. First, we locate volume which lies near the center of a face and then
we locate volume which lies far from the center of a face. In order to de-
termine the density based on the effects of these two contributions, we will
have to use a more localized concept of density.

Definition 2.4. Let Q) be a finite area region lying on the boundary of a tube
T. Let D be a Dirichlet domain for T'. Consider the set Xq C D consisting
of the union of all line segments which

i) have one endpoint on the axis of T
it) are perpendicular to the axis of T
i11) have one endpoint on 0D and

i) pass through €.

The density over the region ) is defined to be the percentage of the volume
of Xq which lies in T

There is a simple relationship between the volume of XoN7T and Area((2),
where Area is meant to be n — 1 dimensional volume. We have three di-
mensional applications in mind, so will use terminology that is well-suited
there. In H? the relationship is Vol(Xq NT) = & tanhr - Area(2).

If one takes the portion of T which lies in a fundamental Dirichlet domain
and divides it into various regions {2; then the density of the tube packing
will be a weighted average of the densities over the ;, with the weighting
given by the areas of the €2;. In particular, we shall divide 0T into regions
corresponding to the faces of the Dirichlet domain and then subdivide each
of those regions into points near the center of the face and points far from
the center of the face. We will then establish upper bounds on the density
over those regions. This will establish an upper bound on the density of the
packing.

3. CONES IN HYPERBOLIC SPACE

Our effort to develop an upper bound on density for tube packings will
start by generalizing a result in [Prz01] which allows us to locate some
volume that lies outside of the tubes. First, we define the region in question.

Definition 3.1. Given two non overlapping tubes Ty and Ty of radius r, we
take a ball B; of radius r lying in T; with center on the common perpendicular
to the axes of T1 and Ts. We define the region W to be the set of points
which are closer to both B1 and Bs than to any other radius r ball which is
disjoint from both B1 and Bs.
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This construction parallels what was done in [Prz01]. As there, we see that
the region W is a union of two right circular cones (when W is nonempty).

Proposition 3.2. Let the distance between the axes of T1 and Ts be 2r+2d.
If tanh?(r + d) < tanhrtanh2r, then W is nonempty and is the union of
two right circular cones.

Proof. Since the argument presented here is essentially identical to the one
in [Prz01], we shall omit many of the details. Choose a point p € W. Let
B3 be a radius r ball which is disjoint from By and B,. It is sufficient to
consider the case in which Bj is as close to p as possible. Note that since p
lies in W, B3 cannot contain p. We claim that the optimal position for Bs
is for it to be adjacent to both By and By with its center coplanar with p
and the centers of By and By. By taking a cross section in this plane, it is
easy to complete the rest of the proof. O

Our interest is in tubes not balls, so we state a similar result involving
tubes. From this point, we always assume that tanh? (r+d) < tanhr tanh 2r.

Proposition 3.3. The points in the region W are closer to T and 15 than
to any other radius r tube which is disjoint from I1 and T5.

Proof. Choose a point p € W. Let T3 be a radius r tube which is disjoint
from 77 and T5. Let By and By be as before and let B3 be the radius r ball
in T3 which is closest to p. Since p is closer to By and By than to Bs, it
is closer to 17 and Ty than to Bs. As the point in 73 which is closest to p
will lie on the boundary of Bs, we see that p is closer to 77 and T5 than to
T3. O

Finally, we consider the (nonempty) regions Wj; corresponding to all pos-
sible pairs of tubes T; and Tj.

Proposition 3.4. The interiors of the regions W;; do not overlap each
other.

Proof. Choose a point p in W;;. Determine the two tubes which are closest
to p. These tubes must be T; and Tj. This rules out the possibility that p
also lies in Wy, where {3, j} # {k,[}. O

4. POINTS NEAR FACE CENTERS

The main result of [Prz01] can be used to determine a lower bound on the
volume lying outside of a tube and near the center of a face which touches
the boundary of the tube. We wish to generalize this to arbitrary faces and
also modify it a little to make it easier to estimate density. We start by
making some definitions.

Definition 4.1. Given a face f of the Dirichlet domain for a tube T, con-
struct the corresponding region W as in Definition 8.1 where Ty is the tube
on the opposite side of f. Let ¥ be the intersection of OW with 0B1. The
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region X (if nonempty) will be an n — 2 sphere (see Figure 1). Project X
orthogonally onto the n — 1 dimensional hyperplane 11 passing through pi
perpendicular to the altitude of the cones in W. This projection will also be
an n — 2 sphere. Let its radius be R.

A

FIiGURE 1

We now construct the region which we shall use to determine an upper
bound on density.

Definition 4.2. Let Cy be the right circular cylinder whose

i) base is the n — 1 ball bounded by the projection of ¥ onto II.
i) altitude lies on the (extended) altitude of W and is of length r 4 d.

Let Cs be the corresponding cylinder constructed by exchanging the roles of
Tl and T2.

We will show that the set C = (C; U Cy) \ (11 U T) has the desired
properties for a density computation. There are several things we need to
verify.

Proposition 4.3. C C W. As a result, the only Dirichlet domains that C
intersects are the ones for T1 and T5.

Proof. Because of the rotational symmetry of C; about the altitude of W, it
is sufficient to check this in a two dimensional cross section. We note that
we need only verify that C1 N C C W.

In two dimensions, we are dealing with the situation illustrated by Figure
2.

Here W reduces to a union of two isosceles triangles and C} is a quadri-
lateral with two right angles. Since the point at which 9C} intersects W is
at a distance of r from p; (by definition), we see that C1\ T} C C\ By C W.

Because C' C W, the points of C' are closer to T and T5 than to any other
tubes. Thus each point in C' lies in either the Dirichlet domain for 77 or the
Dirichlet domain for T5. O

At this point, we may partition the face f into regions near its center and
regions far from its center. Let (2 = C1N07T7 and let Xq be the corresponding
region as in Definition 2.4.
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FIGURE 2

Proposition 4.4. (CN D) C (Xq\T1)

Proof. 1f we extend C; to a semi-infinite cylinder C7°, it will contain Cs.
Further, we claim that ((C° N D)\ T1) C (Xq \ Th). To see this, take a
cross section along any 2 dimensional hyperplane perpendicular to the axis
of 1. Such a cross section is indicated in Figure 3.

i COi
4 f

FIGURE 3

It is clear that within this cross section, C N D C ((C* N D)\ Ty) C
(X \ 1Y) O

Of course, we could prove the same thing about 75 and its Dirichlet
domain. It is important to note the symmetry of C, W, T} UT, and f under
the isometry which swaps 77 and 75, and thus that the portions of C' lying
in the two Dirichlet domains are congruent, so in particular have the same
volume.

Proposition 4.5. Vol(Xq \ 71) > Vol(C1 \ T1)
Proof. Since (C N D) C (Xq\T1), Vol(Xq \ T1) > Vol(CN D) = Vol(CO)
VOl(Cl \ Tl)

Proposition 4.6. The density over the region €2 is at most

Vol(Cy \ 1)\ *
(1 * Vol(X; A %))

Proof.

o

Vol(Xg) _ Vol(Xp\T1) _ Vol(Ci\T1)

Vol(Xq N1TY) Vol(XqNnTy) = Vol(XqnT)
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VOI(XQ [aVAT )

The density over € is Vol X0)

, yielding the desired result. O

5. POINTS FAR FROM FACE CENTERS

In the previous section, we determined an upper bound on the density
contributed by points near face centers. We now need to deal with points
which are not near face centers. First, we should be specific about which
points are under consideration here.

Definition 5.1. Given a face f, let Q be defined as it was in the previous
section. Let Q€ be the set of points in 0Ty \ Q through which we can produce
a line segment which has one endpoint on the axis of 11, has one endpoint
in f, and is perpendicular to the axis of T1. Denote the union of all such
line segments Xqo .

As before, we will produce an upper bound on the density of T3 N Xqe
within Xqc. This will be achieved by placing a lower bound on Vol(Xqc).
Specifically, we shall determine a lower bound on the distance from the axis
of T1 to points in f N Xqc. By removing any part of Xqgc whose distance
from the axis of T} is greater than this lower bound, we will have reduced
Xqc to its intersection with some tube which is coaxial with 77 and of larger
radius. It is then easy to compute the relevant volumes.

However, we’d prefer to avoid having to actually compute a distance func-
tion on f, so we take a somewhat less direct approach. We’ll need to deal
with the axes of the tubes here, so let [; be the axis of T;.

Proposition 5.2. To determine a lower bound on iIfl{C dist(p, 11) it is suf-
peE
ficient to assume that l1 and lo are coplanar. Let gm, denote the minimum

distance in this situation.

Proof. Let g(p) = max(dist(p, 1), dist(p,l2)). For points p on the face f,
g(p) = dist(p, 1) = dist(p,l2). Then
inf dist(p,l1) > inf .
e Bt = B ey 9
If we were to rotate {1 and l5 about their intersections with their common
perpendicular then the value of g(p) will be at least the value achieved when

l1,lo and p are coplanar. Thus, it is sufficient to consider p to be coplanar
with [; and Is. O

Proposition 5.3. When Iy and Iy are coplanar, inf g(p) occurs
peH\ (T UT>UC)

at a point on OC.

Proof. 1t is sufficient to work within the plane containing l; and ly. By
moving p if necessary, we can reduce g(p) unless p is equidistant from Iy
and Iy or p € 9C. Within this two dimensional setting, the set of points
equidistant from [; and [3 is just a line midway between them. Along this
line, g(p) will decrease as p moves closer to the common perpendicular of
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and 5. Hence, the exceptional case in which p is equidistant from [ and [y
can be reduced to p € 9C. O

Now, we relate this to a density estimate.

Proposition 5.4. The density of D over Q€ is at most the ratio of the
volumes of tubes of radius r and gmin .

Proof. The density of D over Q¢ is %
Q

line segments all of length at least gy, its volume is at least as great as the
volume of the portion of Xgc which lies within gy, of l;. Since Xqc N7} is
the portion of Xqc which lies within 7 of I, the ratio of the two volumes is
at most the ratio of the volumes of a tube of radius r with a tube of radius
9min- U

. Since Xqc is a union of

6. COMPUTATIONS

An upper bound on density is described in the previous sections, but
unless we can actually compute the upper bound, it is of little use. Here,
we embark upon an effort to evaluate the many expressions involved. Some
of the expressions are sufficiently complicated that we approximate them.
The resulting upper bound on density is thus not as strong as possible.

As a start, we simply determine the value of R, the radius used in con-
structing the cylinder C7. In order to do this, we will introduce some inter-
mediate variables which we have not yet mentioned.

Let us introduce these variables as we recall how R was produced. Given
two balls B; and By of radius r whose centers p; and ps are separated by
a distance 2r + 2d, we situated a third radius r ball B3 (center ps) so as to
have it tangent to each of the first two. Because of the rotational symmetry
involved, we take a cross section along the plane containing the centers of
the three balls. Consider the triangle p1pops, and let v be the angle pspsapy
(which is congruent to angle pspips). See Figure 4. Within this triangle, the
cross section of the region W is the set of points lying closer to both p; and
pe than to ps. Of course, this region (if nonempty) will be bounded by the
perpendicular bisectors of the segments p1ps and pops. Along the bisector of
pop3 we locate the point g within W (if there is one) which is at a distance
of r from p1. Let B be the angle gpi1ps. If we project ¢ perpendicularly onto
the line perpendicular to pips through p; then R is the distance from the
projection to pi. If for any reason this construction fails, we set R = 0.

Proposition 6.1. If tanhr tanh2r > tanh(r + d) tanh(r + 2d), then 8 is
determined by

cosh r cosh 2r — cos(y — ) sinh r sinh 2r
= coshr cosh(2r + 2d) — cos sinh 7 sinh(2r + 2d)

and R is determined by tanh R = tanhrsin 8. Otherwise, there is no point
q so R=0.
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P3

P1 p2

FIGURE 4

Proof. The point q is equidistant from p3 and py. Using the law of cosines,
we can determine the length of the segments gps and ¢ps. Equating these
yields the desired expression.

As long as the perpendicular bisector of psps intersects pips at a point
within 7 of p1, there will be a point ¢. Constructing a right triangle using
the bisector as one leg, half of pops as the other and a portion of pips as
the hypotenuse, we find that the point ¢ exists as long as the hypotenuse
has length at least r 4+ 2d. Using hyperbolic trigonometry, this requires that
tanh r cosy > tanh(r 4+ 2d). We readily compute that cosy = % and
thus that g exists as long as tanhr tanh 2r > tanh(r + d) tanh(r + 2d).

We then determine R by using hyperbolic trigonometry. U

(Note: In much of what follows, we shall assume that R # 0. The results
are still true in the case in which R = 0, but they are often meaningless.
When it matters, we will deal with the R = 0 case. Also, R is a function of
r and d, although we will suppress that in the notation.)

We will occasionally need an upper bound on (.

Proposition 6.2. § < 1. Equality is achieved only when d = 0.

Proof. Since p1po is at least as long as pips, if the angle gpips were larger
than the angle gpips, it would follow that gps would be longer than g¢ps.
Since gp2 and gps have the same length, we see that v — 3 > 3. The only
case in which pips and pip3 have the same length is d = 0. U

Although this is not the order in which we worked earlier, it is quicker to
determine ¢, than to deal with the density over €.

Proposition 6.3. tanh g,,;, = cosh R tanh(r + d)

Proof. 1t will be helpful in this argument to refer to Figure 5.

As was shown earlier, determining g, reduces to a two dimensional
computation. We have a pentagon with four right angles, with two unknown
but equal sides forming the non-right angle at a vertex we shall call A. Across
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_51,/&

p1 p2

FIGURE 5

from this angle is the side pyps of length 2r 4+ 2d. The remaining two sides
have length R. We need to find the point(s) on the two unknown sides which
minimize the function g, the larger of the distances to p; and po.

Given the nature of the function g, there are only two types of locations
for the minimizing point(s). Either the point is equidistant from p; and po
or it is locally the closest point to either p; or pa. We wish to eliminate the
second possibility.

Clearly, on one of the sides, s1, the right angled vertex minimizes the
distance to p; and on the other so, the right angled vertex minimizes the
distance to ps. However, it should be equally clear that these points are
not minima of g. If there is a point on s; which is a local minimum of the
the distance to po, then the line joining this point to po would form a right
angle with s;. That would force the (produced) angle p; Aps to be acute.
We shall show that this can’t happen.

The point ¢ lies on s;. Extend the line segment piq until it hits the
(extended) bisector of the angle A. This produces a right triangle with 3
as one angle and the adjacent side of length r 4+ d. The other angle o will
be smaller than half of the angle p1 Aps. Thus it is sufficient to show that
a > %.

Form an isosceles triangle by adjoining another copy of this triangle along
the leg opposite 8. This triangle has base of length 2r + 2d, two angles of
size 3 (at p; and py), and one angle of size 2a. By the law of cosines,

cos20 = —cos® 3+ sin® S cosh(2r + 2d)
= 1+ 2sin? Bcosh?(r + d)
< —1+ 2sin? % cosh?(r + d)

—1+ (1 — cos~) cosh?(r + d)

_ gmﬁv+dy—$m@ﬁ;E§%T+®

sinh?(r + d) — sinh(r 4 d) cosh(r 4+ d) < 0

IN
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Thus o > 7 so we have shown that g,,;;, can be determined by considering
points on s; which are equidistant from p; and pe. Of course, the only
such point is the vertex A. It is easy then to determine that tanh ¢,,;, =
cosh R tanh(r 4 d). O

So far, we have not needed to know the dimension in which we are work-
ing. The arguments in the previous sections worked regardless of dimension
and the computations have so far been independent of dimension. Unfortu-
nately, the remaining computations involve volumes, which will, of course
depend on the dimension. While we do not believe that it would be much
more difficult to develop formulas which work in all dimensions, the compu-
tations are already fairly complicated in dimension three. Since we produce
no applications of the result in higher dimensions, we restrict ourselves to
dimension three from this point on.

The remaining part of our density estimate involves computing Vol(Cy \
T1) and Area(2). It is not particularly difficult to determine these expres-
sions, but they both end up being integrals which likely can’t be evaluated
in closed form. To simplify the computations, we shall approximate these
expressions. We start with Vol(Cy \ T1).

Recall that C is a right circular cylinder of radius R and height r + d
and that T3 is the set of points which are within 7 of some specific line in
the base of (.

Proposition 6.4.

21 pR  ptanh™!(cosh p tanh(r+d))
Vol(C1 \ T1) > / / / sinh p cosh? z dz dp df
0 0 T

Proof. We perform the computations in a cylindrical coordinate system
(p,0,z). Specifically, we choose a particular plane in H? and establish a
polar coordinate system (p, §) on the plane. For an arbitrary point, z is the
distance to the plane, and (p,f) are the coordinates of the perpendicular
projection of the point onto the plane. It is not too difficult to see that the
volume element in this coordinate system is sinh p cosh? z dz dp db.

We now take the z = 0 plane to be the base of 'y and the line p = 0
to be the altitude of C;. The “top” of C is a plane parallel to z = 0 at a
distance of r + d. We note that this is not the set z = r 4+ d, which is not a
plane. Rather, the top is the set z = tanh™!(cosh p tanh(r + d)) as is easy
to verify. Finally, we need to compute the lower bound on z. Since points
of C1 \ T1 are all at least r from some line in the z = 0 plane, using z = r
as a lower bound will only decrease the volume.

The bounds on p and 6 should be obvious. U

We note that this integral can be evaluated in closed form.

Lastly, we must determine the area of €). Before we can do this, we’ll
have to find a parametrization for 9€2, which will, of course, require a choice
of a coordinate system. Since €2 lies on 977 which bears a natural Euclidean
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structure, we shall use that coordinate system. However, some of the inter-
mediate computations will require coordinates on all of H?. We choose to
work in the upper half space model.

Proposition 6.5. In the natural Euclidean coordinates on 011, the bound-
ary of Q is the parametrized curve

coth rsintsinh R
Vcosh2R + costsinh2R

(cosh r In v/cosh 2R + cos t sinh 2R, sinh 7 sin !

where t € [0, 27].

Proof. In the upper half space, we shall place the axis of 17 along the positive
x3 axis and place the base of C7 in the plane 27 = 0 with its center at (0,0, 1).
It is then easy to see that the boundary of the base is the parametrized curve

(0,sin tsinh R, cosh R + cos t sinh R)

for ¢t € [0, 27].

The “sides” of C'y are surfaces consisting of line segments passing through
this curve perpendicular to the base. In the upper half space model, these
lines will be (Euclidean) circles. Because the circles are perpendicular to
the x1 = 0 plane (and the x3 = 0 plane), they will be cross sections of
(Euclidean) spheres centered at (0,0,0). As a function of ¢, the radius of
the sphere will be v/cosh 2R + costsinh 2R. Further, on a given circle, the
9 coordinate will be fixed at sintsinh R

We must determine where C7 meets 077. In the upper half space model,
0Ty will be a (Euclidean) cone with vertex at the origin and vertex angle
¢ = cos 'sechr.

Thus, we must find the set of points which satisfy xo = sintsinh R, are
at a distance of v/cosh 2R + costsinh 2R from (0,0, 0), and at an angle of ¢
from the x3 axis. A simple trigonometric computation shows that the curve

(\/SiIl2 #(cosh 2R + costsinh 2R) — sin? ¢ sinh? R,
sintsinh R, cos ¢v/cosh 2R + cos tsinh 2R )

is the desired set. Actually, there would be a second copy with a negative
x1 value, but we have discarded that as C] exists on only one side of 1 = 0.
We have chosen that to be the positive side.

It is now easy to transfer to the Euclidean coordinates on 97 yielding
the indicated curve. U

Unfortunately, using this parametrization to compute the area of Q2 would
be complicated. We instead approximate the area with the area of a suitably
sized ellipse.

—1 tanh R
tanh r

Proposition 6.6. Area(€?) < 7R coshrsinhrsin

Proof. First, we notice that performing a linear transformation on the coor-
dinate system for 0T will affect Area(€2) only by scaling it. Thus, we scale by
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Rcoshr in the direction parallel to the axis of T} and by sinh 7 sin ! tt‘;’;l}}llf
in the perpendicular direction. The image of €2 is then bounded by
1 Sin—l coth rsintsinh R
- sh 2R-+cos ¢ sinh 2R
(}—% In vcosh 2R + cost sinh 2R, \g;):—l tancksz =)
tanhr
where t € [0, 27].
Letting « be the first coordinate and y the second, we have that
[tanhr tanh R ]?
.92 Rx - - —1
s t = s s
sin _sinhRe sin(y sin by )
[tanhr tanh R ]2
1_1‘2_[/_ — Rm‘- "—1
s | sinh R° sin(y sin tanhr )
2B _ cosh 2R 2 [tanhr g, . . _qy tanh R ] 2
1- (| — = - e sin(y sin
sinh 2R |sinh R tanhr |
tanh R |?
2¢2% cosh 2R — e — 1 = 4 |cosh R tanh re™ sin(ysin™! )
tanhr
tanh R |?
cosh2R — cosh2Rz = 2 |cosh Rtanhr sin(ysin™? )
tanhr
tanh R ]?
sinh? R — sinh? Rz = |cosh R tanhr sin(y sin™*
tanh r
2
‘1.2 : : —1tanh R
_ sinh" Rz [Sln(y sin”" A )]
s 1.2 tanh R
Sl R i
Thus, the transform of € is the region inside a curve of the form % +
@ = 1. One can check that under certain circumstances, including

sin® b

sin b > sinh a this curve bounds a region whose area is at most w. Thereafter,
one need only check that 'g‘l}fff > sinh R. This places the desired bound on
Area(). O

We are finally in a position to start making specific claims about tube
density.

Proposition 6.7. The density of a symmetric packing of tubes of radius r
in H? is at most the larger of

sup

r
d 1 tanh R

tanh r

<1 . 9 027r fOR ftanh’](coshptanh(T-Fd)) sinhpcosh2 zdzdp d0>

7R sinh? rsin™
and
sinh? r
sup —— —
4 sinh”tanh™ " (cosh R tanh(r + d))
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Proof. The density of the tube packing is at most the larger of the density
over Q and the density over Q€. The latter of these should be fairly simple
to compute, giving the second of the two functions in the statement of this
proposition.

The density over €2 can be bounded above by the first function by incor-
porating the various results concerning the volume of C \ T} and the area
of €.

If d is large enough that tanhr tanh 2r < tanh(r + d) tanh(r + 2d), then

R = 0 so Q is empty, making the first expression irrelevant (and incom-
sinh? r
O

putable). The second expression simplifies to just T2 ()

Proposition 6.8. Both of the suprema in Proposition 6.7 are achieved when

d=0.

Proof. This proof is a long and rather unpleasant computation. Presumably,
one could also verify this statement numerically. Rather than reproduce the
entire argument here, we shall indicate some of the key steps and leave the
rest to the interested reader.
To start, we perform a change of variable p = Ru in the triple integral,
yielding:
(1 + 2 fo27r ﬁ)l frtanh *(cosh Ru tanh(r+)) sinh Ru cosh? z dz du d@)

—1 tanh R
tanh r

7 sinh? 7 sin

To establish that this is maximized when d = 0, it would be sufficient to

show that

(sinh Ru) f:anhﬂ (cosh Ru tanh(r+d))

cosh? z dz

:-—1 tanh R
s tanh r

is minimized when d = 0.
This can be evaluated rather easily to give, after rearrangement,

(Sinh Ru) tanh 7t tanh cosh R cosh Ru tanh(r + d)
sinh R 2 1 — cosh? Rutanh?(r + d)

:n—1 tanh R
+ tanh ™! (cosh Rutanh(r + d)) — sinh 7 coshr — 7]

s tanh r

After proving that R is a decreasing function of d, one sees that most of
the factors in the above expression are easily dealt with, with the exception
of cosh R and the bracketed expression. The negative terms in the bracketed
expression can be ignored, leaving cosh R multiplied by a function of v =
tanh™! (cosh Rutanh(r 4+ d)). We then factor sinhv out of the bracketed
expression, yielding the product of cosh Rsinhv and an increasing function
of v. Showing that cosh Rsinhv is an increasing function of d then shows
that v is also an increasing function of d, finishing the proof.

To show that cosh Rsinhtanh™!(cosh Rutanh(r + d)) is increasing as a
function of d, we first show that it’s sufficient to assume that u = 1. With
some fairly minimal computations, one then sees that it is sufficient to show
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that sech? R—tanh?(r+d) is a decreasing function of d. This computation is
rather involved and difficult to describe succinctly, so we will stop here. [

Theorem 6.9. The density of a symmetric packing of tubes of radius r in
H? is at most the larger of

—1 tanh R
tanhr

-1
1+ 2[cosh Rtanh_l(cosh Rtanhr) —r — (cosh R — 1)(% sinh 2r + )]
Rsinh? rsin
and
sinh? r

sinh? tanh ™! (cosh Rtanhr)

sinh r

where tanh R = S eosl?

functions.

. Let p(r) denote the value of the larger of these two

Proof. By substituting d = 0 in Proposition 6.7 and then evaluating the
integral, we get the indicated expression. O

It appears to be the case that the former expression is always the larger,
although we did not attempt to verify this, beyond plotting the two graphs.
We also note that for large r, (roughly 7.1 or more), Marshall and Martin’s
asymptotic result [MMO00a] is better than ours. Figure 6 is a graph of p(r)
for r < 3.

FIGURE 6

7. APPLICATIONS

There are various results concerning tubes in hyperbolic 3-manifolds and
at the moment, Agol’s [Ago02] is one of the strongest.

Theorem 7.1. [Ago02] Let M be a hyperbolic 3-manifold and let v be a
geodesic link in M with an embedded open tubular neighborhood T of radius
r. Let M., denote M \ v in a complete hyperbolic metric. Then

cothr
coth 2r
Agol proceeds by noting that Vol(T') < Vol(M), thereby producing a

relationship between r and the volumes of M and M.,,. We may now improve
this estimate.

Vol(M,) < (coth rcoth 2r)% (Vol(M) + ( — 1)Vol(T))
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Corollary 7.2. Let M be a hyperbolic 3-manifold and let v be a geodesic
link in M with an embedded open tubular neighborhood T of radius r. Let
M, denote M \ ~y in a complete hyperbolic metric. Then

cothr
1)
coth 2r )

Proof. Vol(T') < p(r)Vol(M). Then one need only rearrange the terms. [J

Vol(M) > (tanh r tanh 2r) 2 Vol (M, ) (1 + p(r)(

We now use this to improve estimates concerning small volume hyperbolic
3-manifolds.

Proposition 7.3. All orientable hyperbolic 3-manifolds have volume at least
0.324.

Proof. Cao and Meyerhoff have shown [CMO1] that the minimal volume
noncompact orientable hyperbolic 3-manifold has volume 2.0298.... The

minimal volume orientable hyperbolic 3-manifold is known, by a result of

Gabai, Meyerhoff, and Thurston [GMTO03], to contain an embedded tube of

radius at least 10%3 about its shortest geodesic. Using our improved version

of Agol’s result, we have that

th
Vol(M) > Vol(Mw)(tanhrtanh%)%(l—I—p(r)(c(:ch; — 1))t
T
log 3 3 log 3, coth log : -1
> 2.0298(tanh —22 tanhlog 3)3 (1 —1
> 2.0208(tanh 25 tauh log 3)} (1 + p(5=) (i~ 1)
> 0.324

O

Agol had already established a lower bound of 0.32, so our result repre-
sents only a very small improvement. This is in part because our density
estimate is weaker for small tube radii. One can see a larger improvement
in results concerning large tubes.

Proposition 7.4. The shortest geodesic in the smallest volume orientable
hyperbolic 3-manifold has length at least 0.184 and has an embedded tube
about it of radius at most 0.946.

Proof. Again, using our modified version of Agol’s result, we can see that
if 7 > 0.946 then Vol(M) > 0.943, which is greater than the volume of
the Weeks manifold. With this knowledge, we then resort to a result of
Marshall and Martin [MMOOb] which produces a lower bound on geodesic
length, given tube radius. For tubes of radius between 1°§3 and 0.946, we
see that geodesic length is at least 0.184. ]

The lower bound on geodesic length has been growing at a rapid pace,
but as of now, the previous best known lower bound is 0.162 [HK02].
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