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Abstract. For n + 1 disjoint flats of dimension k in Hn, we produce
a Delaunay cell which is a generalization of the Delaunay simplex as-
sociated to n + 1 points in Hn. Combinatorially, these Delaunay cells
resemble truncated n-dimensional simplices. For certain classes of ar-
rangements of flats in Hn, we prove that these Delaunay cells can be
glued together to form a Delaunay complex, with the result that al-
most every point of Hn is in a total of one Delaunay cell, counting with
multiplicities and orientations.

1. Introduction

For an arrangement of points P = {p1,p2, · · · } ⊂ Rn which are in general
position, the Delaunay triangulation is a dual triangulation to the Voronoi
tessellation. For each pi, the corresponding Voronoi cell is the set of all
points of Rn which are closer to pi than to any of the other points in P.
Each vertex of the Voronoi tessellation is equidistant from exactly n+ 1 of
the points of P. For every vertex of the Voronoi tessellation, we can con-
struct the convex hull of the corresponding n+1 points, to form a Delaunay
simplex.

We generalize this to arrangements of flats in Hn. Even for points, Delau-
nay triangulations are less well behaved in Hn than in Rn, so we introduce
some additional assumptions.

Definition 1.1. A symmetric co-compact arrangement of k-dimensional
flats in Hn is a collection P of k-dimensional flats for which

(1) any two flats in P have no points in common within Hn,
(2) there is a discrete group Γ < Isom+(Hn) such that Γ acts transitively

on P and Hn/Γ is a compact n-manifold.

Throughout this paper, P will denote such an arrangement. We will use
n to denote the dimension of the ambient space, k to denote the dimension
of the flats, and Γ to denote the symmetry group. In addition, when we
refer to flats being disjoint, we mean that they have no intersection points
in Hn.
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Given disjoint flats Π1, · · · ,Πn+1, we construct a Delaunay cell. The
convex hull of the flats doesn’t provide a useful definition of a Delaunay cell,
as the convex hull would be unbounded. Instead, for each point x ∈ Hn,
we find the closest point πi(x) on Πi. We define the open n-dimensional
Delaunay cell to be all points x ∈ Hn such that x lies in the interior of the
convex hull of π1(x), · · · , πn+1(x). We also define lower dimensional open
Delaunay cells, to act as faces of the open n-dimensional Delaunay cell and
finally a closed Delaunay cell by taking the closure of the union of the open
Delaunay cells of all dimensions.

In general, the closed Delaunay cell will not be a simplex, although
typically its combinatorial structure will resemble that of a truncated n-
dimensional simplex, with the truncation faces collapsed down to the di-
mension of the flats. Further, the faces of the Delaunay cell won’t be totally
geodesic surfaces. In some degenerate cases, the Delaunay cell might not
even be n-dimensional. It’s also possible for the Delaunay cell (or at least
a part of it) to be negatively oriented. After some preliminaries in Sections
2 and 3, Section 4 is devoted to exploring the properties of these Delaunay
cells.

The main result of Section 4 is that there is a surjective continuous func-
tion from a truncated n-dimensional simplex to the closed Delaunay cell and
that this map can be chosen to map faces of the truncated simplex to faces
of the Delaunay cell.

In Section 5, we consider the Voronoi tessellation corresponding to P. For
our purposes, we will need for the Voronoi tessellation to have some fairly
specific topological properties. We prove that for k = n− 1 or n = 3, k = 1
either the Voronoi tessellation already has the requisite properties, or it can
be modified so that it does.

If we fill Hn with Delaunay cells, one might hope that they will tile Hn.
However, that’s not always the case. Some of the cells might have negative
orientation and some cells might be present multiple times. In Section 6, we
construct a Delaunay complex built from truncated simplices each of which
maps to a Delaunay cell. We prove the following:

Corollary 6.11. Counting cells by their multiplicities and orientations, for
n = 3, k = 1, almost every point of H3 is in a total of one open 3-dimensional
Delaunay cell.

Theorem 6.13. Counting cells by their multiplicities and orientations, for
k = n− 1, almost every point of Hn is in a total of one open n-dimensional
Delaunay cell.

In the specific case of n = 2, k = 1, Theorem 6.13 becomes an earlier
result of Marshall and Martin [MM03].

For n = 3, k = 1 the Delaunay complex also provides a geometric real-
ization of Dehn filling. The interior of the Delaunay complex will be home-
omorphic to H3 −

⋃
Π∈P

Π. Taking a quotient by Γ, the Delaunay complex
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of truncated tetrahedra induces an ideal triangulation of

(
H3 −

⋃
Π∈P

Π

)
/Γ,

which is a cusped manifold. After Dehn filling, the cusp will become the
geodesic P/Γ. In a topological sense, one can easily map the cells of the

ideal triangulation of

(
H3 −

⋃
Π∈P

Π

)
/Γ into H3/Γ. Mapping the Delaunay

complex to Delaunay cells provides a geometric way to do this.
Although we do not explore any applications in this paper, in a later

paper, we provide upper bounds on density for packings of collars about
hyperplanes in Hn [Prz12]. One would hope that the same could be done
for tube packings in compact hyperbolic 3-manifolds. The existing upper
bound on the density of tube packings in H3 [Prz06] is not likely to be sharp.
For ball packings, upper bounds on density are often phrased in terms of
the Delaunay triangulation [Rog58] [Bör78].

Another possible application is to Gabai, Meyerhoff, and Milley’s MOM
project [GMM10, GMM09, Mil09]. MOM structures include right-angled
(nonplanar) hexagons. In the case of n = 3, each face of one of the Delaunay
cells we produce will be bounded by a right-angled hexagon, and thus may
provide a method of constructing a MOM structure.

2. Orthogonal Projections in Hyperbolic Space

Throughout this paper, we will use the Klein model Dn for hyperbolic
space, Hn. In this model, hyperbolic flats are accurately represented as
Euclidean flats.

Definition 2.1. We will represent a k-dimensional flat Π as a vector c ∈ Dn

and a set of unit vectors d1, · · · ,dk ∈ Rn. The vector c is the point on Π
which is closest to 0. The vectors d1, · · · ,dk are an orthonormal basis (in
the Euclidean sense, not the hyperbolic sense) for the tangent space to Π.
Then c · di = 0 and di · dj = δij.

Our immediate goal is to determine the hyperbolic distance between a
point x ∈ Dn and a flat Π, represented as above. In order to do that, we
need to be able to determine whether Euclidean vectors v and w in the
tangent space to Dn are orthogonal in a hyperbolic sense.

Lemma 2.2. [Rat94]

(1) The Riemannian metric gx : TxD
n×TxDn → R which induces hyper-

bolic geometry on Dn is given by gx(v,w) =
vT ((1− |x|2)In + xxT )w

(1− |x|2)2
.

(2) The hyperbolic distance between points x,y ∈ Dn is given by

cosh−1

(
1− x · y√

1− |x|2
√

1− |y|2

)
.

Given a point x ∈ Dn, we can now find the closest point (in a hyperbolic
sense) on a flat Π.
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Proposition 2.3. Given a point x ∈ Dn and a flat Π represented by the vec-

tors c and d1, · · · ,dk, the point on Π which is closest to x is c+ 1−|c|2
1−x·c

k∑
i=1

(x·

di)di. We will denote this point as π(x), the hyperbolic projection of x onto
Π.

Proof. Any point y ∈ Π can be written as c +
k∑
i=1

tidi for suitable ti ∈ R. If

y is to be the point on Π which is closest to x, then we need x − y to be
hyperbolically orthogonal to each of d1, · · · ,dk. As these are vectors based
at y, we need dTi ((1− |y|2)In + yyT )(y − x) = 0 for all i. Distributing the
dTi , this becomes ((1 − |y|2)dTi + tiy

T )(y − x) = 0. Continuing to expand
the expression, we get (1− |y|2)(ti −dTi x) + ti(|y|2 − yTx) = 0. Solving for

ti, we have that ti = 1−|y|2
1−(x·y)(x ·di). That means that there is some positive

number α = 1−|y|2
1−(x·y) such that ti = α(x · di) for all i.

Using this expression for ti, we can determine that

1− |y|2 = 1−

(
|c|2 +

k∑
i=1

t2i

)
= 1−

(
|c|2 + α2

k∑
i=1

(x · di)2

)
Similarly,

1− (x · y) = 1−

(
(x · c) + α

k∑
i=1

(x · di)2

)
Using the expression α = 1−|y|2

1−(x·y) , we have that

α

(
1−

(
(x · c) + α

k∑
i=1

(x · di)2

))
= 1−

(
|c|2 + α2

k∑
i=1

(x · di)2

)

Solving for α produces the result that α = 1−|c|2
1−x·c , proving that y =

c + 1−|c|2
1−x·c

k∑
i=1

(x · di)di
�

We will sometimes regard the function π as being defined on Dn.

Corollary 2.4. If k = n−1 and c 6= 0, then π(x) = π(0)+1−|π(0)|2
1−x·π(0)

(
x− (x·π(0))

|π(0)|2 π(0)
)

.

Proof. The vectors c
|c| ,d1, · · · ,dn−1 are an orthonormal basis for Rn, so

n−1∑
i=1

(x · di)di = x−
(
x ·
(

c
|c|

))
c
|c| . Finally, note that π(0) = c. �

Lemma 2.5. Given a flat Π in Dn, at x = 0 the derivative of the projection
function π : Dn → Π is equal to a scalar multiple 0 < α ≤ 1 of the Euclidean
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orthogonal projection matrix from Rn to the k-dimensional tangent space to
Π. Further, α = 1 if and only if Π contains the point 0.

Proof. The function π is given by π(x) = c + 1−|c|2
1−x·c

k∑
i=1

(x · di)di. Using the

product rule, the derivative is then

0 + (1− |c|2)

(
k∑
i=1

(x · di)di
cT

(1− x · c)2
+

1

1− x · c

k∑
i=1

did
T
i

)

At x = 0, this simplifies to (1−|c|2)
k∑
i=1

did
T
i , which proves the lemma. �

3. Vectors Surrounding a Point

We first recall some basic facts about barycentric coordinates.

Definition 3.1. Given points v1, · · · ,vm+1 ∈ Rn,

(1) The affine hull of the points is the minimal affine subset of Rn which
contains all of the points.

(2) The convex hull of the points is the minimal convex set containing
all of the points.

(3) Each point x in the affine hull can be written as
m+1∑
i=1

sivi, with

m+1∑
i=1

si = 1. The si are called the barycentric coordinates of x. If

v1, · · · ,vm+1 are in general position, then the barycentric coordi-
nates of a point are unique.

(4) If we use cyclic indexing mod m + 1 for the vectors vi, then the
barycentric coordinates satisfy the equations

si

i+m∧
j=i+1

(vj − vi) =

i+m∧
j=i+1

(vj − x)

(5) A point x is in the convex hull if and only if it has barycentric coor-
dinates which are all nonnegative. A point is in the m-dimensional
interior of the convex hull if and only if its barycentric coordinates
are unique and are all positive.

Our interest will be in determining which points lie in the convex hull.
To do this efficiently, we need to simplify the condition a little.

Lemma 3.2. For vectors v1, · · · ,vm+1 ∈ Rn,
m∧
i=1

(vl+i−vl) =
m∑
j=0

(−1)m(j−l)

(
m+j∧
i=j+1

vi

)
,

so the value of (−1)ml
m∧
i=1

(vl+i − vl) is independent of l (again using cyclic

indices for the vectors).
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Proof. We first expand the expression
m∧
i=1

(vl+i − vl).

m∧
i=1

(vl+i − vl) =

m∧
i=1

vl+i +

m∑
j=1

(
j−1∧
i=1

vl+i

)
∧ (−vl) ∧

 m∧
i=j+1

vl+i


=

m∧
i=1

vl+i −
m∑
j=1

(−1)j−1

(
j−1∧
i=0

vl+i

)
∧

 m∧
i=j+1

vl+i


=

m∧
i=1

vl+i +
m∑
j=1

(−1)j

(
m+j∧
i=m+1

vl+i

)
∧

 m∧
i=j+1

vl+i


=

m∧
i=1

vl+i +
m∑
j=1

(−1)j(−1)(m−1)j

 m+j∧
i=j+1

vl+i


=

m∧
i=1

vl+i +
m∑
j=1

(−1)mj

 m+j∧
i=j+1

vl+i


=

m∑
j=0

(−1)mj

 m+j∧
i=j+1

vl+i



Reindexing i, this is the same as
m∑
j=0

(−1)mj

(
l+m+j∧
i=l+j+1

vi

)
. Now, by rein-

dexing j, this is the same as
l+m∑
j=l

(−1)m(j−l)

(
m+j∧
i=j+1

vi

)
. Since we are using

cyclic indices mod m+ 1, and all indices are present in the j-indexed sum,

we may rewrite the sum as
m∑
j=0

(−1)m(j−l)

(
m+j∧
i=j+1

vi

)
.

Thus, we have that
m∧
i=1

(vl+i−vl) =
m∑
j=0

(−1)m(j−l)

(
m+j∧
i=j+1

vi

)
, so (−1)ml

m∧
i=1

(vl+i−

vl) =
m∑
j=0

(−1)mj

(
m+j∧
i=j+1

vi

)
. Since the right side of the expression does not

depend on l, it must be the case that (−1)ml
m∧
i=1

(vl+i−vl) is also independent

of l. �

Definition 3.3. We say that a point x ∈ Rn is surrounded by the points
v1, · · · ,vm+1 if v1, · · · ,vm+1 are in general position and the point x lies in
the relative interior of their convex hull.
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Proposition 3.4. The point x ∈ Rn is surrounded by the points v1, · · · ,vm+1

(using cyclic indices mod m+1) if and only if the multi-vectors (−1)mj
m∧
i=1

(vj+i−

x) for all values of j are nonzero and are positive scalar multiples of each
other.

Proof. Assume first that v1, · · · ,vm+1 aren’t in general position. Then x is

not surrounded. Further,
m∧
i=1

(v1+i − v1) = 0. By Lemma 3.2,

0 =

m∧
i=1

(v1+i − v1) =

m∧
i=1

((v1+i − x)− (v1 − x))

=

m∑
j=0

(−1)m(j−1)

 m+j∧
i=j+1

(vi − x)


= (−1)m

m∑
j=0

(−1)mj

(
m∧
i=1

(vj+i − x)

)

Thus, the multi-vectors (−1)mj
m∧
i=1

(vj+i − x) can’t all be positive scalar

multiples of each other, unless they’re all 0. In this case, the “if and only
if” statement holds.

Now assume that v1, · · · ,vm+1 are in general position. One consequence

of this is that
j+m∧
i=j+1

(vi − vj) is nonzero.

If x does not lie in the affine hull then x doesn’t lie in the convex hull
either. Further, if x doesn’t lie in the affine hull of v1, · · · ,vm+1 then

the affine hull of x,v1, · · · ,vm+1 is (m + 1)-dimensional, so
m+1∧
i=1

(vj+i − x)

is not zero. If all of the nonzero multi-vectors (−1)mj
m∧
i=1

(vj+i − x) were

scalar multiples of each other, then there is a nonzero real number α so

α
m∧
i=1

(vi − x) =
m∧
i=1

(vm+i − x). Wedging both sides of the equation with

vm+1−x, we have α
m+1∧
i=1

(vi−x) = 0, which is impossible. Thus, the multi-

vectors (−1)mj
m∧
i=1

(vj+i−x) are not all scalar multiples of each other, so the

“if and only if” statement holds in this case.
Finally, assume that x lies in the affine hull. Then x is surrounded if

and only if its barycentric coordinates sj are all positive. The barycentric

coordinates satisfy sj
j+m∧
i=j+1

(vi − vj) =
j+m∧
i=j+1

(vi − x). We may rewrite this
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as sj(−1)mj
j+m∧
i=j+1

(vi − vj) = (−1)mj
j+m∧
i=j+1

(vi − x). From Lemma 3.2, we

know that (−1)mj
j+m∧
i=j+1

(vi−vj) is independent of j. Thus, x is surrounded

if and only if the multi-vectors sj(−1)mj
j+m∧
i=j+1

(vi − vj) for all values of j

are nonzero and are positive scalar multiples of each other. Thus, the point

x is surrounded if and only if the multi-vectors (−1)mj
m∧
i=1

(vj+i − x) for all

values of j are nonzero and are positive scalar multiples of each other. �

Much of this can also be done in hyperbolic geometry.

Definition 3.5. Given points p1, · · · ,pm+1 ∈ Hn,

(1) The affine hull of the points is the minimal flat in Hn which contains
all of the points.

(2) The convex hull of the points is the minimal convex set containing
all of the points.

(3) We say that a point x ∈ Hn is surrounded by p1, · · · , pm+1 if
p1, · · · ,pm+1 are in general position and x lies in the relative in-
terior of their convex hull.

We may also define barycentric coordinates on Hn. There are several
non-equivalent ways to do this. We choose the following definition.

Definition 3.6. Given points p1, · · · ,pm+1 ∈ Hn and a point x in their
affine hull, let ui(x) ∈ TxHn be the tangent vector at x which is tangent to
the geodesic from x to pi and has length equal to the distance from x to pi.
Then hyperbolic barycentric coordinates of the point x are (s1, · · · , sm+1) ∈

Rm+1 such that
m+1∑
i=1

siui(x) = 0 ∈ TxHn and
m+1∑
i=1

si = 1.

Computing the hyperbolic barycentric coordinates in Hn would be diffi-
cult without the use of a model. As usual, we use the Klein model, Dn.

Proposition 3.7. Given a point vi ∈ Dn and a point x 6= vi in Dn, the
tangent vector ui(x) pointing from x to vi (described in Definition 3.6) is

(1− |x|2)(vi − x) cosh−1

(
1−x·vi√

1−|x|2
√

1−|vi|2

)
√

(vi − x)T ((1− |x|2)In + xxT )(vi − x)

If x = vi, then ui(x) = 0. The function ui is continuously differentiable on
Dn.

Proof. Identifying the set Hn with the set Dn, vi − x is a tangent vector
at x which is tangent to the geodesic from x to vi. Using the Riemannian
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metric on TxD
n given by Lemma 2.2, we see that the tangent vector vi − x

has (hyperbolic) length

√
(vi − x)T ((1− |x|2)In + xxT )(vi − x)

(1− |x|2)2
. Then

(1− |x|2)(vi − x) cosh−1

(
1−x·vi√

1−|x|2
√

1−|vi|2

)
√

(vi − x)T ((1− |x|2)In + xxT )(vi − x)

is the tangent vector vi − x with its (hyperbolic) length rescaled to equal
the distance from x to vi.

If x = vi, then since the length of ui is equal to the distance from x to
vi, ui must equal 0.

The function ui was defined in an intrinsic way, so without loss of gen-
erality, we may perform a hyperbolic isometry to move vi to the origin.
Hyperbolic isometries are continuously differentiable on Dn. If vi = 0, and
x 6= 0, then

ui(x) =

(1− |x|2)(−x) cosh−1

(
1√

1−|x|2

)
√

(−x)T ((1− |x|2)In + xxT )(−x)

= −(1− |x|2)x tanh−1 |x|√
|x|2 − |x|4 + |x|4

= −(1− |x|2)x
tanh−1 |x|
|x|

Since ui(0) = 0, this is a continuously differentiable function on Dn.
�

We will usually ignore the exceptional case that x = vi since the expres-
sion for x 6= vi has a removable singularity when x = vi.

Proposition 3.8. Given points v1, · · · ,vm+1 ∈ Dn, and a point x in their
affine hull:

(1) If v1, · · · ,vm+1 are in general position and the hyperbolic barycentric
coordinates of x exist, then the coordinates are uniquely determined.

(2) The hyperbolic barycentric coordinates of x exist, are unique, and are
all positive if and only if x is surrounded by the points v1, · · · ,vm+1.

(3) x lies in the convex hull of the points v1, · · · ,vm+1 if and only if
there are hyperbolic barycentric coordinates for x which are all non-
negative.

Proof. Since the definition of the hyperbolic coordinates was given in an
intrinsic manner, they must be invariant under hyperbolic isometries. Thus,
without loss of generality, we may assume that x = 0 . This greatly simplifies

the vectors ui(x) to ui(0) = vi
|vi| cosh−1

(
1√

1−|vi|2

)
= vi

tanh−1 |vi|
|vi| . If one of

the vi is 0, this expression has 0 as a limit.
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The equations for computing hyperbolic barycentric coordinates are
m+1∑
i=1

sivi
tanh−1 |vi|
|vi|

=

0 and
m+1∑
i=1

si = 1. Assume that there is a solution to these equations. Let

ti = si
tanh−1 |vi|
|vi| . Then

m+1∑
i=1

tivi = 0. If the affine hull of v1, · · · ,vm+1 con-

tains 0 and is m-dimensional, there is a unique (up to scaling) linear com-
bination of the vectors v1, · · · ,vm+1 which adds to 0. Thus, (t1, · · · , tm+1)
are determined up to scaling, so (s1, · · · , sm+1) are determined up to scaling.

Since
m+1∑
i=1

si = 1, (s1, · · · , sm+1) are uniquely determined. This proves the

first part of the proposition.
To prove the second part of the proposition, we use the following chain

of equivalent statements:

(1) 0 is surrounded (in a hyperbolic sense) by v1, · · · ,vm+1.
(2) 0 is surrounded (in a Euclidean sense) by v1, · · · ,vm+1.

(3) The multi-vectors (−1)mj
m∧
i=1

vj+i are all nonzero and are positive

scalar multiples of each other

(4) The multi-vectors (−1)mj
m∧
i=1

vj+i
tanh−1 |vj+i|
|vj+i| are all nonzero and are

positive scalar multiples of each other
(5) 0 is surrounded (in a Euclidean sense) by

v1
tanh−1 |v1|
|v1|

, · · · ,vm+1
tanh−1 |vm+1|
|vm+1|

(6) There are uniquely determined positive numbers s1, · · · , sm+1 such

that

m+1∑
i=1

sivi
tanh−1 |vi|
|vi|

= 0 and
m+1∑
i=1

si = 1.

(7) 0 has uniquely determined positive hyperbolic barycentric coordi-
nates relative to the points v1, · · · ,vm+1 ∈ Dn.

The final claim of the proposition is proved by noting that a point is
on the boundary of the convex hull of v1, · · · ,vm+1 if and only if either it
is one of the points v1, · · · ,vm+1 or it is surrounded by some proper sub-
set of {v1, · · · ,vm+1}. As we’ve already proved, a point x is surrounded
by some proper subset of {v1, · · · ,vm+1} if and only if it has unique hy-
perbolic barycentric coordinates (relative to the proper subset) that are all
positive. The remaining coordinates can all be 0. The point x is one of the
v1, · · · ,vm+1 if and only if it has hyperbolic barycentric coordinates one of
which is a 1 and the rest of which are 0. �
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4. Defining Delaunay Cells

We now define the central objects of study in this paper.

Definition 4.1. Given pairwise disjoint k-dimensional flats Π1, · · · ,Πm+1 ∈
Hn (for 1 ≤ m ≤ n) and the corresponding hyperbolic projection functions
πi : Hn → Πi, we define

(1) the open m-dimensional Delaunay cell associated to these flats to be
{x ∈ Hn |x is surrounded by the points π1(x), · · · , πm+1(x)},

(2) the closed ideal m-dimensional Delaunay cell associated to these flats
to be the union of all open Delaunay cells associated with any non-
singleton subsets of the set of flats {Π1, · · · ,Πm+1},

(3) the closed m-dimensional Delaunay cell associated to these flats to
be the closure in Hn of the closed ideal Delaunay cell associated with
the flats.

For brevity, we will often omit mention of the dimension of a Delaunay
cell. For purposes of intuition, we compare with the well-known Delaunay
cell associated with a set of points v1, · · · ,vm+1 (i.e. 0-dimensional flats).
The projection function πi would be the constant function vi. Then the
open Delaunay cell would be the interior (in an m-dimensional sense) of the
convex hull of v1, · · · ,vm+1 (which might be empty). If non-empty, it would
be an open m-dimensional simplex. The closed ideal Delaunay cell includes
the interiors (in the appropriate lower dimensional senses) of all faces of the
convex hull of v1, · · · ,vm+1. Assuming the open Delaunay cell is nonempty,
the closed ideal Delaunay cell would be an m-dimensional simplex with
the vertices removed (so topologically, though not geometrically, an ideal
simplex). If the open m-dimensional cell were empty, the closed ideal m-
dimensional cell would be the convex hull of v1, · · · ,vm+1 with some of the
vertices removed. A vertex which happened to lie in the relative interior
of some other face would not be removed. Finally, in any case, the closed
Delaunay cell would be the convex hull of v1, · · · ,vm+1.
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k = 0 k = 1

three k-dimensional flats in H2

open Delaunay cell

closed ideal Delaunay cell

closed Delaunay cell

Proposition 4.2. The open Delaunay cell associated with two disjoint flats
Π1 and Π2 is the portion of their common perpendicular which lies between
the two flats.

Proof. For a point x ∈ Dn to lie in the open Delaunay cell, it would need
to lie in the relative interior of the convex hull of π1(x) and π2(x). If x is
a point on either of the two flats, then although it lies in the convex hull of
π1(x) and π2(x), it doesn’t lie in the relative interior of that convex hull.

Thus, we assume that x does not lie within either Π1 or Π2. Let ` be the
common perpendicular to Π1 and Π2. By the definition of the projection
functions, the line segment from x to πi(x) must be hyperbolically perpen-
dicular to Πi. If x were surrounded by π1(x) and π2(x), then it would lie on
the open line segment joining π1(x) and π2(x). Then the points x, π1(x),
and π2(x) must be collinear and their containing line must be hyperbolically
perpendicular to both flats. Thus, x is a point on `.

Since x ∈ `, π1(x) is ` ∩ Π1 and π2(x) is ` ∩ Π2. The convex hull of
π1(x) and π2(x) is the portion of ` which lies between Π1 and Π2, which is
a one-dimensional set which contains x. Thus, x ∈ ` is surrounded by the
points π1(x) and π2(x) if and only if x lies between Π1(x) and Π2(x). �
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Corollary 4.3. (1) Closed ideal 1-dimensional Delaunay cells are open
line segments.

(2) Closed 1-dimensional Delaunay cells are closed line segments of nonzero
length.

(3) Closed ideal m-dimensional Delaunay cells are nonempty.
(4) Closed m-dimensional Delaunay cells are nonempty.

Proof. The closed ideal 1-dimensional Delaunay cell associated with Π1 and
Π2 is identical to the open 1-dimensional Delaunay cell associated with Π1

and Π2, since there are no (nonempty) non-singleton subsets of {Π1,Π2}
except for {Π1,Π2}. The other claims all follow immediately. �

Proposition 4.4. Closed Delaunay cells are bounded subsets of Hn.

Proof. Let x be a point on ∂Hn. If x is not an endpoint of any of the
flats Π1, · · · ,Πm+1, then the points π1(x), · · · , πm+1(x) all lie in Hn, so x
is not in the convex hull of the points π1(x), · · · , πm+1(x). Thus, there is a
neighborhood of x which is disjoint from the closed Delaunay cell.

Now suppose that x is an endpoint of one of the flats, without loss of
generality Π1. Then π1(x) = x. Using the Klein model of Hn, without loss
of generality, we assume that x = (0, · · · , 0, 1) and that 0 ∈ Π1. The points
π2(x), · · · , πm+1(x) all lie in Dn, so their nth coordinates are strictly less
than some M < 1. For any point y ∈ Dn, the nth coordinate of π1(y) is
equal to the nth coordinate of y. For y ∈ Dn sufficiently near x, the nth

coordinates of π2(y), · · · , πm+1(y) are all less than M , and thus less than
the nth coordinate of π1(y). Thus, y does not lie in the convex hull of
π1(y), · · · , πm+1(y) unless y = π1(y). However, such a point would not lie
in the open Delaunay cell associated to any subset of Π1, · · · ,Πm+1. Thus,
points sufficiently near x do not lie in the closed ideal Delaunay cell, so
points near x don’t lie in the closed ideal Delaunay cell either.

We have found a neighborhood of ∂Hn which is disjoint from the closed
Delaunay cell. Since ∂Hn is homeomorphic to a sphere, it is compact. Thus,
the neighborhood of ∂Hn can be chosen to be of uniform “thickness”. More
accurately, the complement of the neighborhood can be chosen to be a closed
disk of finite radius. Thus, the closed Delaunay cell is bounded. �

We will need a variant of the Implicit Function Theorem

Lemma 4.5. Let X × Y ⊂ Rm×Rn be open and connected and let f : X ×
Y → Rn be a continuously differentiable function, denoted f(x,y). Let A ⊂
X be path-connected. Define B ⊂ Y to be B = {b ∈ Y | there is some a ∈
A for which f(a,b) = 0}. Suppose that

(1) for every a× b ∈ A×B, Det ∂f∂y 6= 0,

(2) B is bounded and its closure lies in Y ,
(3) there is at least one point a0 ∈ A for which there is a unique b0 ∈ B

such that f(a0,b0) = 0.
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Then there is a surjective differentiable function g : A → B such that
f(a,b) = 0 if and only if b = g(a).

Proof. By the Implicit Function Theorem, since Det ∂f∂y 6= 0, if the function

g exists, it is differentiable. Suppose that the function g does not exist.
Then there is some point a1 ∈ A for which the set {b ∈ B | f(a1,b) = 0}

has cardinality other than 1. We will refer to such a point as a point at
which g is not well-defined. Let γ : [0, 1]→ A be a path from a0 to a1. Let
T = sup{t ∈ [0, 1] | g is well-defined on γ([0, t])}. Without loss of generality,
we may assume that either T = 0 or T = 1.

Case 1: T = 0. By the Implicit Function Theorem at a0 × g(a0), for
each t near 0 there is at least one point b ∈ B for which f(γ(t),b) = 0.
By the assumption that T = 0, there is a decreasing sequence of numbers
tj → 0 such that g is not well-defined at any γ(tj). Thus, there must be
bj 6= cj ∈ B such that f(γ(tj),bj) = f(γ(tj), cj) = 0. Since B is bounded,
each of these sequences has a convergent subsequence. Without loss of gener-
ality, we may assume that both sequences converge. Then f(a0, lim

j→∞
bj) =

lim
j→∞

f(γ(tj),bj) = 0, so we must have that lim
j→∞

bj = g(a0). Similarly

lim
j→∞

cj = g(a0). However, by the Implicit Function Theorem at a0 × g(a0),

for each tj there is a unique solution y near g(a0) to f(γ(tj),y) = 0. Thus,
bj = cj , which is a contradiction.

Case 2: T = 1. On γ([0, 1)), g is well-defined, but at γ(1) = a1, g is not
well-defined. Take an increasing sequence of numbers tj → 1. Again, since
B is bounded, the sequence g(γ(tj)) has a convergent subsequence g(γ(tji)).
Then f(a1, lim

i→∞
g(γ(tji))) = lim

i→∞
f(γ(tji), g(γ(tji))) = 0. By the definition

of the set B, lim
i→∞

g(γ(tji)) ∈ B. Thus, the reason that g is not well-defined

at a1 must be that there are b 6= c ∈ B such that f(a1,b) = f(a1, c) = 0.
By the Implicit Function Theorem at a1 × b, for large j, there is a unique
bj near b such that f(γ(tj),bj) = 0. Similarly, for large j, there is a
unique cj near c such that f(γ(tj), cj) = 0. Since b 6= c, we can find
disjoint neighborhoods of b and c, so for sufficiently large j, bj 6= cj . This
contradicts the assumption that g is well-defined on γ([0, 1)). �

Definition 4.6. Given pairwise disjoint flats Π1, · · · ,Πn+1 in Dn, define a
function f : Rn ×Dn → Dn by using the hyperbolic barycentric coordinates
equation

f((s1, · · · , sn),x) =
n+1∑
i=1

(1− |x|2)(πi(x)− x)si cosh−1

(
1−x·πi(x)√

1−|x|2
√

1−|πi(x)|2

)
√

(πi(x)− x)T ((1− |x|2)In + xxT )(πi(x)− x)

with sn+1 = 1−
n∑
i=1

si.

Using matrix notation,



DELAUNAY CELLS FOR ARRANGEMENTS OF FLATS IN HYPERBOLIC SPACE 15

f(s,x) =

(1− |x|2)(πi(x)− x) cosh−1

(
1−x·πi(x)√

1−|x|2
√

1−|πi(x)|2

)
√

(πi(x)− x)T ((1− |x|2)In + xxT )(πi(x)− x)


1≤i≤n+1

[
s

sn+1

]

which we abbreviate as f(s,x) =
[

u1(x) · · · un+1(x)
] [ s

sn+1

]
.

We note again that although this function is undefined whenever x lies in
one of the flats, the singularities are removable.

Lemma 4.7. Let Π1, · · · ,Πn+1 be pairwise disjoint flats in Dn. If 0 6∈ Πi,
then at x = 0, the matrix Dui is negative definite. If 0 ∈ Πi, then at x = 0,
the matrix Dui is nonpositive definite. As a consequence, at x = 0, if for all
i ≤ n+ 1 we have that 0 ≤ si < 1, then the matrix ∂f

∂x = [ ∂f
∂x1

· · · ∂f
∂xn

]
is a negative definite matrix.

Proof. Assume first that 0 6∈ Πi. To compute Dui at x = 0, we note that
order two terms in x are irrelevant. Thus, we simplify ui(x) to

ui(x) =
πi(x)− x

|πi(x)− x|
cosh−1

(
1− x · πi(x)√

1− |πi(x)|2

)
+O(|x|2)

Recalling the expression for πi(x) from Proposition 2.3, we see that there
are still more order two terms within |πi(x)|2 and x · πi(x). Eliminating
those, we simplify to

ui(x) =
πi(x)− x

|πi(x)− x|
cosh−1

(
1− x · πi(0)√

1− |πi(0)|2

)
+O(|x|2)

The expression is now simple enough that we may compute Dui.

Dui =
Dπi(x)− In
|πi(x)− x|

cosh−1

(
1− x · πi(0)√

1− |πi(0)|2

)

− πi(x)− x

|πi(x)− x|3
cosh−1

(
1− x · πi(0)√

1− |πi(0)|2

)
((πi(x)− x)T (Dπi(x)− In))

+
πi(x)− x

|πi(x)− x|
1√(

1−x·πi(0)√
1−|πi(0)|2

)2

− 1

−πi(0)T√
1− |πi(0)|2

+O(|x|)

Evaluating at x = 0 gives
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Dui|x=0 =
Dπi(0)− In
|πi(0)|

cosh−1

(
1√

1− |πi(0)|2

)

− πi(0)

|πi(0)|3
cosh−1

(
1√

1− |πi(0)|2

)
((πi(0))T (Dπi(0)− In))

− πi(0)

|πi(0)|2
πi(0)T

=
tanh−1(|πi(0)|)
|πi(0)|

(
In −

πi(0)(πi(0)T )

|πi(0)|2

)
(Dπi(0)− In)− πi(0)(πi(0)T )

|πi(0)|2

We must prove that for all i, Dui|x=0 is negative definite. To do this,
we decompose Rn into a sum of three orthogonal vector spaces, Rn =
Span(πi(0))⊕T ⊕W where T is the k-dimensional tangent space to Πi and
W is the (n−k−1)-dimensional orthogonal complement to Span(πi(0))⊕T .
Then any vector y ∈ Rn can be written in a unique way as y = βπi(0)+t+w
for β ∈ R, t ∈ T , and w ∈ W . By Lemma 2.5, Dπi(0)y = αt for some
0 < α < 1. Then

Dui|x=0 y =
tanh−1(|πi(0)|)
|πi(0)|

(
In −

πi(0)(πi(0)T )

|πi(0)|2

)
(αt− y)− πi(0)β

=
tanh−1(|πi(0)|)
|πi(0)|

(αt− y + πi(0)β)− πi(0)β

=
tanh−1(|πi(0)|)
|πi(0)|

((α− 1)t−w)− πi(0)β

Thus, yT Dui|x=0 y = −|πi(0)|2β2 − tanh−1(|πi(0)|)
|πi(0)| ((1− α)|t|2 + |w|2). If

y 6= 0, then yT Dui|x=0 y < 0.
Now assume that 0 ∈ Πi. We have already seen ui(x) has a removable

singularity at x = 0, but now we must compute the derivative at x = 0. Re-
ferring back to the form of πi(x) from Proposition 2.3, we see that x·πi(x) =

|πi(x)|2. That allows us to simplify
(1−|x|2)(πi(x)−x) cosh−1

(
1−x·πi(x)√

1−|x|2
√

1−|πi(x)|2

)
√

(πi(x)−x)T ((1−|x|2)In+xxT )(πi(x)−x)

to
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ui(x) =

(1− |x|2)(πi(x)− x) cosh−1

(
1−|πi(x)|2√

1−|x|2
√

1−|πi(x)|2

)
√

(πi(x)− x)T ((1− |x|2)(πi(x)− x) + x(|πi(x)|2 − |x|2))

=
(1− |x|2)(πi(x)− x) cosh−1

√
1−|πi(x)|2

1−|x|2√
(1− |x|2)(|πi(x)|2 − 2|πi(x)|2 + |x|2) + (|πi(x)|2 − |x|2)2

=
(1− |x|2)(πi(x)− x) tanh−1

√
|x|2−|πi(x)|2

1−|πi(x)|2√
(|x|2 − |πi(x)|2)((1− |x|2) + (|x|2 − |πi(x)|2))

=
(1− |x|2)(πi(x)− x)√

(|x|2 − |πi(x)|2)(1− |πi(x)|2)

(√
|x|2 − |πi(x)|2
1− |πi(x)|2

+O

((
|x|2 − |πi(x)|2

1− |πi(x)|2

) 3
2

))

=
(1− |x|2)(πi(x)− x)

1− |πi(x)|2

(
1 +O

(
|x|2 − |πi(x)|2

1− |πi(x)|2

))
For purposes of computing the derivative at x = 0, we may again ig-

nore order two terms in x, meaning that the derivative at x = 0 is simply
Dπi|x=0 − In. Proceeding as before, this matrix is nonpositive definite on
Rn.

The x derivative of f is ∂f
∂x

∣∣∣
x=0

=
n+1∑
i=1

si Dui|x=0. The si add to 1, but

they are all less than 1, so at least two of the si are positive. Since all of the
matrices Dui|x=0 are nonpositive definite, and at most one isn’t negative

definite, we have that ∂f
∂x

∣∣∣
x=0

is negative definite.

�

Lemma 4.8. Let Π1, · · · ,Πn+1 be pairwise disjoint flats in Dn. Suppose
that 0 lies in their closed ideal Delaunay cell. If π1(0), · · · , πn+1(0) are in

general position, then the matrix ∂f
∂s

∣∣∣
x=0

= [ ∂f
∂s1

· · · ∂f
∂sn

]
∣∣∣
x=0

is invert-

ible. The sign of the determinant of ∂f
∂s

∣∣∣
x=0

is (−1)n times the sign of the

orientation of the simplex with vertices π1(0), · · · , πn+1(0).

Proof. With sn+1 = 1 −
n∑
i=1

si,
∂f
∂si

will be the coefficient of si minus the

coefficient of sn+1. At x = 0, ∂f
∂si

evaluates to

∂f

∂si

∣∣∣∣
x=0

=

πi(0) cosh−1

(
1√

1−|πi(0)|2

)
|πi(0)|

−
πn+1(0) cosh−1

(
1√

1−|πn+1(0)|2

)
|πn+1(0)|

= πi(0)
tanh−1(|πi(0)|)
|πi(0)|

− πn+1(0)
tanh−1(|πn+1(0)|)
|πn+1(0)|
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Then

Det
∂f

∂s

∣∣∣∣
x=0

= ∗
n∧
j=1

(
πj(0)

tanh−1(|πj(0)|)
|πj(0)|

− πn+1(0)
tanh−1(|πn+1(0)|)
|πn+1(0)|

)
Since π1(0), · · ·πn+1(0) are in general position and 0 is in their convex

hull, 0 has unique nonnegative Euclidean barycentric coordinates (t1, · · · , tn+1)
and unique nonnegative hyperbolic barycentric coordinates (t′1, · · · , t′n+1).

These satisfy ti
i+n∧
j=i+1

(πj(0)− πi(0)) =
i+n∧
j=i+1

πj(0) and

t′i

i+n∧
j=i+1

(
πj(0)

tanh−1(|πj(0)|)
|πj(0)|

− πi(0)
tanh−1(|πi(0)|)
|πi(0)|

)
=

i+n∧
j=i+1

πj(0)
tanh−1(|πj(0)|)
|πj(0)|

Obviously,
i+n∧
j=i+1

πj(0) and
i+n∧
j=i+1

πj(0)
tanh−1(|πj(0)|)
|πj(0)| are positive scalar multi-

ples of each other. There is some i for which ti is positive. Since
i+n∧
j=i+1

(πj(0)−

πi(0)) is nonzero, t′i
i+n∧
j=i+1

(πj(0)
tanh−1(|πj(0)|)
|πj(0)| −πi(0) tanh−1(|πi(0)|)

|πi(0)| ) must also

be nonzero. Then, for this i,
i+n∧
j=i+1

(πj(0)−πi(0)) and
i+n∧
j=i+1

(
πj(0)

tanh−1(|πj(0)|)
|πj(0)| − πi(0) tanh−1(|πi(0)|)

|πi(0)|

)
are positive scalar multiples of each other. By Lemma 3.2, the same is

true for all i. In particular, the sign of Det ∂f
∂s

∣∣∣
x=0

is the same as the

sign of ∗
n∧
j=1

(πj(0)− πn+1(0)), so is the orientation of the simplex with ver-

tices πn+1(0), π1(0) · · · , πn(0). Reordering the vertices to π1(0) · · · , πn+1(0)
changes the sign by a factor of (−1)n.

�

Definition 4.9. The standard n-dimensional simplex is the subset of Rn+1

given by {(s1, · · · , sn+1) |
n+1∑
i=1

si = 1 and for all i, si ≥ 0}. The standard

ideal n-dimensional simplex ∆n is the standard n-dimensional simplex with
its vertices removed. For purposes of orientation, the order of the vertices
is (1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, · · · , 0, 1).

Proposition 4.10. Given pairwise disjoint flats Π1, · · · ,Πn+1 in Dn, let

X be the closed ideal Delaunay cell associated with these flats. Let
◦
X be

the open Delaunay cell associated with these flats. There is a surjective
differentiable map φ : ∆n → X such that

(1) φ : φ−1(
◦
X)→

◦
X is a diffeomorphism (assuming

◦
X is nonempty),

(2) for t ∈ φ−1(
◦
X), φ is orientation preserving if and only if the simplex

with vertices π1(φ(t)), · · · , πn+1(φ(t)) has positive orientation,
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(3) φ carries m-dimensional faces of ∆n to m-dimensional closed ideal
Delaunay cells within X. Restricted to any m-dimensional face of
∆n, φ depends on only m+ 1 of the n+ 1 flats.

Proof. By Lemma 4.7, we know that if 0 ≤ si < 1 for i ≤ n + 1, then ∂f
∂x

is invertible at x = 0. Hyperbolic barycentric coordinates are preserved
by hyperbolic isometries, and the function f is the defining equation for
computing hyperbolic barycentric coordinates, so without loss of generality,
we may perform a hyperbolic isometry moving any point of interest to the
origin. Thus ∂f

∂x is invertible at every point in Dn.
A point x ∈ Dn is in X if and only if it lies in some open m-dimensional

Delaunay cell. This is equivalent to x having positive hyperbolic barycentric
coordinates with respect to some non-singleton subset of π1(x), · · · , πn+1(x)
and 0 for the remaining coordinates. Thus, x is in X if and only if there is

some t ∈ ∆n, with t =

[
s

sn+1

]
for which f(s,x) = 0.

We claim that there is a unique x ∈ X such that f((1
2 ,

1
2 , 0, · · · , 0),x) = 0.

At any point x ∈ X for which f((1
2 ,

1
2 , 0, · · · , 0),x) = 0 the vectors (in

TxHn) to π1(x) and π2(x) must be equal and opposite. Thus, x must be the
midpoint of the common perpendicular to Π1 and Π2.

Thus, we meet the hypotheses for Lemma 4.5, with A = {(s1, · · · , sn) ∈
Rn | 0 ≤ si < 1 for i ≤ n + 1} and B = X. Then there is a surjective
differentiable function g : A → X such that f(s,x) = 0 if and only if
x = g(s).

It is a local diffeomorphism at any point at which ∂f
∂s has rank n. By

Lemma 4.8, g is a local diffeomorphism at each point s for which the affine
hull of π1(g(s)), · · · , πn+1(g(s)) is n-dimensional. Thus, g is a local diffeo-

morphism at each point in g−1(
◦
X). Further, each point in

◦
X has unique

hyperbolic barycentric coordinates, proving that g : g−1(
◦
X)→

◦
X is a bijec-

tion.
Let φ : ∆n → A→ X be the composite of g and projection onto the first

n coordinates. Such a projection is a diffeomorphism, so we have proved the
first claim.

The derivative of g is given by ∂g
∂x =

(
−∂f
∂x

)−1
∂f
∂s . As −∂f

∂x is posi-

tive definite, it has positive determinant. The determinant of ∂f
∂s has sign

equal to (−1)n times the sign of the orientation of the simplex with vertices

π1(g(s)), · · · , πn+1(g(s)). Thus, Det ∂g∂x has sign equal to (−1)n times the
sign of the orientation of the simplex with vertices π1(g(s)), · · · , πn+1(g(s)).
Since the projection map from ∆n to Rn is orientation preserving/reversing
depending on whether n is even/odd respectively, we have φ is orientation
preserving or reversing depending on the sign of the orientation of the sim-
plex with vertices π1(φ(t)), · · · , πn+1(φ(t)).

To prove the third claim, suppose without loss of generality that the first
m + 1 coordinates of t are the only nonzero coordinates. Then φ(t) lies in
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the convex hull of π1(0), · · · , πm+1(0), so lies within a closed m-dimensional
Delaunay cell. Further, the i = m+ 2 through i = n+ 1 terms in f will all
be 0, so f will not depend on Πm+2, · · · ,Πn+1, and thus φ won’t either. �

Definition 4.11. Let Tn be a truncated n-dimensional simplex. Let T ′n be
Tn with the truncation faces removed. T ′n is diffeomorphic to ∆n.

Theorem 4.12. Given pairwise disjoint flats Π1, · · · ,Πn+1 in Dn, let X
be the closed ideal Delaunay cell associated with these flats. There is a sur-
jective continuous function φ̄ : Tn → X̄ such that when restricted to T ′n, φ̄
is equivalent to the function φ given by Proposition 4.10. The truncation
faces are mapped to subsets of the flats Π1, · · · ,Πn+1. For any particular
truncation face, the map φ̄ can be chosen so the level sets along that trunca-
tion face are either affine subspaces of dimension at least n− k− 1 or lie in
the convex hull of some of the truncation face’s vertices. For any particular
truncation face, if k = 1, the map φ̄ can be chosen so the level sets along
that truncation face are either affine subspaces of dimension at least n − 2
or equal the convex hull of some of the truncation face’s vertices.

Proof. Without loss of generality, we may perform a hyperbolic isometry so
0 ∈ Πn+1. Then πn+1 : Dn → Πn+1 is just the Euclidean projection from
Dn to Πn+1. In particular, it’s a linear transformation. Thus, Dπn+1 is a
constant projection matrix and for any x ∈ Dn, πn+1(x) = Dπn+1x. From
this, we see that (Dπn+1)(πn+1(x)− x) = 0.

As in the preceding proof, we may project ∆n to A ⊂ Rn. Let h : A →
∆n be the inverse of this projection. Then g = φ ◦ h. Consider the map

r : {v ∈ Rn | |v| ≥ 1} → Rn given by r(v) =
(

1− 1
|v|

)
v. This map moves

each point in {v ∈ Rn | |v| ≥ 1} one unit closer to the origin. The closure of
r−1(A) will be diffeomorphic to an n-dimensional simplex with one vertex
truncated along a face F . The face F is the face of the closure of r−1(A)
which is nearest the origin so is the portion of the unit sphere which has all
of its coordinates nonnegative.

We construct a function f ′ : F×Πn+1 → Πn+1 with f ′(v,x) = Dπn+1

[
u1(x) · · · un(x)

]
v.

Let B ⊂ Πn+1 be the set

B = {x ∈ Πn+1 | there is some v ∈ F for which f ′(v,x) = 0}

Letting v = (v1, · · · , vn), the matrix ∂f ′

∂x is
n∑
j=1

vj(Dπn+1)(Duj). With uj

viewed as a function defined onDn, Duj is negative definite at any x ∈ Πn+1,
so when restricted to the tangent space to Πn+1, (Dπn+1)(Duj) is also nega-

tive definite, so has rank k. Thus, ∂f
′

∂x is invertible. If f ′((1, 0, · · · , 0),x) = 0,
then (Dπn+1)u1(x) = 0, so at x, the geodesic to the closest point on Π1

is perpendicular to Πn+1. Of course, that same geodesic must be perpen-
dicular to Π1, so it must be their common perpendicular. Thus, there is
a unique x ∈ Πn+1 such that f ′((1, 0, · · · , 0),x) = 0. Thus, we meet the
hypotheses for Lemma 4.5, so there is a surjective differentiable function
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φ̄′ : F → B ⊂ Πn+1 such that f ′(v,x) = 0 if and only if x = φ̄′(v). For
any point in x ∈ B, the preimage under φ̄′ is the set of all v ∈ F such that
f ′(v,x) = 0. The matrix Dπn+1

[
u1(x) · · · un(x)

]
is a k × n matrix,

so its nullspace (in Rn) has dimension at least n − k. The intersection of
the nullspace with the first orthant either has the same dimension as the
nullspace or lies entirely within the span of some of the coordinate axes.
The preimage of x through φ̄′ is the intersection of the nullspace with the
portion of the unit sphere in the first orthant, so either has dimension at
least n − k − 1 or lies in the (spherical) convex hull of some of the vertices
of F . In the case that k = 1, the nullspace has dimension at least n− 1, so
its intersection with the first orthant is either of dimension at least n− 1 or
equals the span of some of the coordinate axes.

Define a function φ̄ : r−1(A)∪F → X∪Πn+1 by φ̄(v) =

{
φ̄′(v) if v ∈ F
g(r(v)) if v ∈ r−1(A)

.

Consider any sequence vj ∈ r−1(A) which converges to a point on v ∈ F .
Then lim

j→∞
r(vj) = 0. Since φ̄(vj) ∈ X ⊂ Dn, φ̄(vj) has a convergent

subsequence which converges to a point x ∈ Dn. Without loss of generality,
assume lim

j→∞
φ̄(vj) = x. We claim that x = φ̄(v).

Based on the definition of φ, f(r(vj), g(r(vj))) = 0. Taking a limit,
f(0,x) = 0. Thus, πn+1(x) = x, so x must lie in Πn+1.

It must also be true that

1

|vj | − 1
(Dπn+1)f(r(vj), g(r(vj))) =

1

|vj | − 1
(Dπn+1)0 = 0

Using the matrix version of f ,

f(r(vj)), g(r(vj)) =
[

u1(g(r(vj))) · · · un+1(g(r(vj)))
]
h(r(vj))

The vector un+1(g(r(vj))) is a scalar multiple of πn+1(g(r(vj)))−g(r(vj)),
so (Dπn+1)un+1(g(r(vj))) = 0. Thus, when computing (Dπn+1)f(r(vj), g(r(vj))),
we may ignore the final column of

[
u1(g(r(vj))) · · · un+1(g(r(vj)))

]
and the final entry of the vector the matrix is multiplied by, h(r(vj)).
Ignoring the final entry of h(r(vj)) produces r(vj). This simplifies 0 =

1
|vj |−1(Dπn+1)f(r(vj), g(r(vj))) to

0 =
1

|vj | − 1
Dπn+1

[
u1(g(r(vj))) · · · un(g(r(vj)))

]
r(vj)

=
1

|vj | − 1
Dπn+1

[
u1(g(r(vj))) · · · un(g(r(vj)))

](
1− 1

|vj|

)
vj

=Dπn+1

[
u1(g(r(vj))) · · · un(g(r(vj)))

] vj

|vj|

Taking a limit as j →∞, we have 0 = Dπn+1

[
u1(x) · · · un(x)

]
v, so

f ′(v,x) = 0. Thus, x = φ̄′(v) = φ̄(v). We have proved that φ̄ is continuous
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along F . Following the same process, we may extend φ̄ to each truncation
face in a continuous fashion. Since each point on a truncation face is a
limit of points in T ′n, we have that φ̄(Tn) is contained within the closure
of φ̄(T ′n) = X. Since a truncated n-simplex is compact, its image under a
continuous map will be compact as well. Thus, φ̄(Tn) = X̄. �

5. The Voronoi Decomposition

In order to construct a Delaunay decomposition, we first need to construct
a suitable Voronoi decomposition. Although the Voronoi decomposition
can be constructed for a wide variety of different kinds of arrangements
of objects, we restrict attention to symmetric co-compact arrangements of
k-dimensional flats in Hn.

To construct a Delaunay complex, we will use an abstraction of the
Voronoi complex. The Voronoi complex, as it’s usually defined, associates
to each Π ∈ P a Voronoi cell, given by the set of points which are closer
to Π than to any other flat in P. Separating such cells from each other are
Voronoi faces of various dimensions less than n. Each face is equidistant
from some finite number of the flats in P. Thus, a face could be labeled
with a finite non-singleton proper subset of P. An abstract Voronoi complex
will have many of the properties of the traditional Voronoi complex, but has
fewer geometric criteria and more topological criteria.

Definition 5.1. For a symmetric co-compact arrangement P of k-dimensional
flats in Hn, an abstract simple Voronoi complex is a Γ-equivariant partition
V of Hn into connected submanifolds (without boundary) labeled by finite
nonempty subsets of P such that:

(1) The Γ action on the labels is compatible with the Γ action on P.
(2) Ignoring labels, there are only finitely many Γ orbits in V.
(3) For each F ∈ V, the set F −F is of dimension dim(F )− 1. We call

this set the boundary of F and denote it ∂F .
(4) For each j-dimensional F ∈ V, the label for F has length at least

n+ 1− j.
(5) For each n-dimensional F ∈ V, the pair (F ∪ ∂F, ∂F ) is homeomor-

phic to the pair (Rk ×Bn−k,Rk × Sn−k−1). Further, the label for F
is {Π} ⊂ P for some Π ⊂ F .

(6) For each F ∈ V of dimension j < n, the pair (F ∪ ∂F, ∂F ) is home-
omorphic to the pair (Bj , Sj−1). Such F are referred to as faces.

(7) For F,G ∈ V, if F intersects the boundary of G, then F is contained
within the boundary of G. Further, the label for F properly contains
the label for G.

(8) Given F ∈ V and a nonempty proper subset A of the label of F ,
there is at most one G ∈ V such that F ⊂ ∂G and G is labeled A.
(Note that there might be another G′ ∈ V also labeled A, but it can’t
contain F in its boundary.)
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(9) Let S ⊂ Hn be the union of all faces of V. Then Hn −
⋃

Π∈P
Π is a

regular neighborhood of S, and S is a deformation retract of Hn −⋃
Π∈P

Π. The retraction map can be chosen to be Γ-equivariant. Thus,

S/Γ is a deformation retract of

(
Hn −

⋃
Π∈P

Π

)
/Γ.

It’s not clear that every symmetric co-compact arrangement P has an
abstract simple Voronoi complex. In general, we can’t be sure that the
faces of the Voronoi decomposition are submanifolds at all. The possibility
exists that some of the faces might have singularities. Even if the faces are
submanifolds, they might not be homeomorphic to disks.

However, there are some circumstances under which the Voronoi decom-
position is an abstract simple Voronoi complex.

Proposition 5.2. For a symmetric co-compact arrangement P of k-dimensional
flats in Hn with either k = n−1 or n = 3, k = 1, the Voronoi decomposition
is an abstract simple Voronoi complex.

Proof. Using somewhat different terminology, Dowty proved that for n =
3, k = 1, the Voronoi decomposition satisfies all of the criteria for an abstract
simple Voronoi complex except possibly the seventh and eighth [Dow00]. In
addition, he proved that each 2-dimensional face has a label of length exactly
2.

In the case k = n − 1, the set of points equidistant from two (n − 1)-
dimensional flats is itself an (n−1)-dimensional flat, from which one quickly
deduces that for j < n, all j-dimensional faces of the Voronoi decomposition
are the relative interiors of convex polytopes and that their labels have length
at least n + 1 − j. Dowty’s proofs of the second, fifth, and ninth criteria
easily generalize beyond n = 3, k = 1. His proof that each 2-dimensional
face in H3 has a label of length 2 easily generalizes to prove that each (n−1)-
dimensional face in Hn has a label of length exactly 2. This leaves us with
with the seventh and eighth criteria to prove in both cases.

At any point x on a j-dimensional face F labeled {Π1, · · · ,Πm}, let the
normal space to F be denoted NxF . Within NxF consider the set of vectors
along which a small perturbation moves into the cell labeled {Πi}. This set
will be a convex radial (n − j)-dimensional subset of NxF . Thus, allowing
i to vary from 1 to m, we produce a tessellation of NxF into m different
convex radial regions. Each of these regions corresponds to one of the cells
labeled {Πi} and meetings of two or more of these regions correspond to
faces of V labeled by subsets of {Π1, · · · ,Πm}. Thus, if we can prove that
this tessellation doesn’t vary (in a combinatorial sense) with x, we will have
proved the seventh and eighth criteria.

For an (n−1)-dimensional face, this tessellation simply breaks the normal
space into two rays, so is obviously independent of x. For an (n − 2)-
dimensional face, the tessellation breaks the two dimensional normal space
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into m different radial sectors. Although the size of the sectors might vary
with x, the order of the sectors couldn’t vary, since all m sectors must be
present for every x. For a 0-dimensional face (a vertex), there’s nothing to
prove, as there’s only one point in the face. This completes the proof for
the case n = 3, k = 1.

What remains to be considered is the case k = n − 1. Let F be a j-
dimensional face of the Voronoi tessellation. Then F is an open subset of
some j-dimensional flat. We may use the Klein model for Hn and without
loss of generality, we may assume that 0 ∈ F . One of the basic properties
of codimension 1 flats in the Klein model is that for any x ∈ Dn, the line

joining x to πi(x) ∈ Πi must pass through the point πi(0)
|πi(0)|2 , so the direction

vector from x to πi(x) is a scalar multiple of x− πi(0)
|πi(0)|2 . Let x be a point on

F . Since we have chosen 0 to lie on F , the set NxF is the same regardless
of whether we view it in a Euclidean or hyperbolic sense. If we take the
direction vector from x to πi(x) and project it into NxF , we are left with
a scalar multiple of the projection of πi(0) into NxF . This verifies that at
every point x ∈ F , the direction vectors from x to π1(x), · · · , πm(x) when
projected into NxF are independent of x, so the tessellation of NxF is also
independent of x. �

In some specific cases, we have verified that the Voronoi decomposition
produces an abstract simple Voronoi complex. However, even in those cases,
we will need stricter criteria to proceed. The Voronoi decomposition can
not be assumed to meet the new criteria, but as we will see, the Voronoi
decomposition could be modified to meet the stricter criteria.

Definition 5.3. We say that a face F in an abstract simple Voronoi complex
is standard if

(1) the cross-sectional tessellation used in the preceding proof is (combi-
natorially) the same at every point in F ,

(2) each face containing F in its boundary is standard,
(3) for each nonempty proper subset A of the label of F , there is a unique

G ∈ V such that F ⊂ ∂G and G is labeled A.

The reason for using the word “standard” is that we want S/Γ to be a

standard spine for

(
Hn −

⋃
Π∈P

Π

)
/Γ.

Proposition 5.4. Let F be a standard face in an abstract simple Voronoi
complex, and let the label for F be {Π1, · · · ,Πm}. Then F is of dimension
exactly n+ 1−m. The link of F is the boundary of an (m− 1)-dimensional
simplex whose vertices are labeled {Π1}, · · · , {Πm} and whose faces are la-
beled by the union of their vertices’ labels.

Proof. By the definition of an abstract simple Voronoi complex, the dimen-
sion of F is j ≥ n + 1 −m. By the definition of a standard face, F lies in
the boundary of a standard face labeled {Π1, · · · ,Πm−1}, which itself lies in
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the boundary of a standard face labeled {Π1, · · · ,Πm−2}, etc., which all lie
in the boundary of the n-dimensional cell labeled {Π1}. Since the boundary
of a face must have lower dimension than the face itself, we see that F has
dimension j ≤ n+ 1−m. Thus, F has dimension exactly j = n+ 1−m.

The cross-sectional tessellation will consist of (m− 1)-dimensional radial
sectors labeled by the various length 1 subsets of {Π1, · · · ,Πm}, which meet
along (m− 2)-dimensional facets labeled by the various length 2 subsets of
{Π1, · · · ,Πm}, etc. Each face has the property that its label is the union of
the labels of the cells containing that face in their boundary. The dual of this
tessellation is a simplex consisting of vertices labeled by the various length
1 subsets of {Π1, · · · ,Πm}, connected by edges labeled by the union of their
two vertices’ labels, etc. The link is the boundary of that simplex. �

Proposition 5.5. Let F be a nonstandard face in an abstract simple Voronoi
complex and let the label for F be {Π1, · · · ,Πm}. If every face which con-
tains F in its boundary is standard and the cross-sectional tessellation is
(combinatorially) the same at every point in F , then the dimension of F is
strictly greater than n+ 1−m.

Proof. The definition of an abstract simple Voronoi complex requires that
the dimension of F be at least n + 1 −m. Suppose that the dimension of
F is exactly n+ 1−m. The cross-sections are of dimension m− 1 and are
broken into m convex radial regions, one for each Πi. Each j-dimensional
cell of this tessellation is the cross-section of an (n+ 1−m+ j)-dimensional
cell of V. By Proposition 5.4, for j > 0, the length of the label of that
face is (n + 1) − (n + 1 −m + j) = m − j. In particular, each edge of this
tessellation has a label which is a length m− 1 subset of {Π1, · · · ,Πm}. By
repeated application of the third criterion in the definition of an abstract
simple Voronoi complex, there are edges in the tessellation. Without loss of
generality, there is an edge labeled {Π2, · · · ,Πm}. However, by assumption,
F is not standard, so for some proper subset A ⊂ {Π1, · · · ,Πm}, there is no
cell of the tessellation labeled A. Without loss of generality, Πm 6∈ A. Then
there is no edge of the tessellation labeled {Π1, · · · ,Πm−1}, for if there were,
the assumption that only standard faces contain F in their boundary would
imply that there is a face labeled A which contains F in its boundary, and
thus a cell of the tessellation labeled A.

By the standardness assumption for all faces containing F in their bound-
ary, the fact that there is an edge of the tessellation labeled {Π2, · · · ,Πm}
means that there is a 2-dimensional cell of the tessellation labeled {Π2, · · · ,Πm−1}.
Since the cells of the tessellation are convex radial regions, that 2-dimensional
cell must have a second edge on its boundary. The label for that edge must
properly contain {Π2, · · · ,Πm−1} and must be different from {Π2, · · · ,Πm}.
Thus, there is an edge labeled {Π1, · · · ,Πm−1}, which is a contradiction. �

Definition 5.6. A standard abstract Voronoi complex is an abstract simple
Voronoi complex in which every face is standard.
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Proposition 5.7. A symmetric co-compact arrangement P of k-dimensional
flats in Hn with either k = n − 1 or n = 3, k = 1 has a standard abstract
Voronoi complex.

Proof. If the Voronoi decomposition is a standard abstract Voronoi complex,
then we’re already done. Otherwise, create an abstract simple Voronoi com-
plex V which is identical to the Voronoi decomposition. For a given face,
the cross-sectional tessellation will be (combinatorially) the same at every
point on the face. There are only finitely many Γ orbits of faces.

There is some nonstandard face. Among the Γ orbits of nonstandard
faces, pick a face F of the largest possible dimension. Let the label for F
be {Π1, · · · ,Πm}. Then F meets the criteria for Proposition 5.5, so has
dimension j > n+ 1−m.

At each x ∈ F ∪ ∂F , take a small closed cross-section transverse to F in
such a way that the union C (Figure 1, with F as the central line) of these
cross-sections contains a neighborhood of F , intersects no other cells of V
except those which either contain F within their boundary or are contained

within the boundary of F , and is homeomorphic to Bn−j × (F ∪ ∂F ). By

Figure 1

performing some homeomorphism within C, we may assume that the cross-
sectional tessellation (Figure 2) is exactly the same for every x ∈ F . Each

Figure 2

cell of the tessellation will be labeled by a proper subset of {Π1, · · · ,Πm}.
There is some proper subset of {Π1, · · · ,Πm} which is not the label of any of
the cells of the tessellation. However, every singleton subset of {Π1, · · · ,Πm}
is the label of exactly one (n− j)-dimensional cell of the tessellation.

The dual within Bn−j of the tessellation is a polytope K (Figure 3) whose
boundary (the link of F ) is a triangulation of Sn−j−1, because every cell of
V of dimension greater than j is standard. The interior of K is labeled
{Π1, · · · ,Πm} and the faces and vertices are labeled by some, but not all, of
the nonempty proper subsets of {Π1, · · · ,Πm}. Each face of K is labeled by
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Figure 3

the union of its vertices’ labels. There are exactly m vertices of K and they
are labeled {Π1}, · · · , {Πm}. Combinatorially triangulate K without adding
any new vertices. This will subdivide the interior of K into several cells of
dimension n−j (Figure 4). Label each of these new cells (of any dimension)

Figure 4

with the union of the labels of its vertices. Thus, this triangulation has the
property that every cell of any dimension is a simplex labeled by the union
of the labels of its vertices. Thus, given any simplex, for each nonempty
proper subset of its label, there is a unique simplex in its boundary bearing
that subset as its label.

Finally, take the dual of this triangulation to produce a new tessellation
of Bn−j (Figure 5). Since the only changes we made to K were in the

Figure 5

interior of K, we see that along Sn−j−1, this new tessellation will be the
same as the original tessellation. Within the interior of Bn−j , we will have
added some new cells of dimension less than n − j. Let C ′ be the product
of this new tessellation with F ∪ ∂F (Figure 6) Along Bn−j × ∂F , perform

Figure 6

a quotient map within each copy of Bn−j to identify all of the new cells
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to a single vertex. Let C ′′ be C ′ under this quotient map. Thus, C ′′ and
C are identical along their boundaries. Within V, replace C by C ′′. The
nonstandard face F has been replaced by various standard faces (not all of
the same dimension). Using the Γ action, make the same change at every
face in the Γ orbit of F . We now have an abstract simple Voronoi complex
in which the number of Γ orbits of nonstandard faces has been decreased by
1. Continue until all faces are standard. �

6. The Delaunay Complex

We now construct a Delaunay complex. Although we can do this for
any standard abstract Voronoi complex, we will mainly focus on the two
situations in which we know that a standard abstract Voronoi complex exists.

Definition 6.1. Let P be a symmetric co-compact arrangement of k-dimensional
flats with a standard abstract Voronoi complex V. For any vertex v ∈ V
labeled {Π1, · · · ,Πn+1}, the link is the boundary of an n-dimensional sim-
plex whose vertices are labeled {Π1}, · · · , {Πn+1} and whose faces have labels
equal to the union of their vertices’ labels. Within this simplex, we draw a
spine and label each cell of the spine with the same label as the simplex face
to which it is dual. There is a label-preserving and orientation-preserving
homeomorphism between this simplex and a closed regular neighborhood of
v.

We construct an abstract complex D by taking for each vertex v ∈ V an
n-dimensional simplex (labeled as above), truncating the vertices from the
simplex, and then performing certain face identifications between different
truncated simplices (described below). A point which lies along a trunca-
tion face is regarded as having the same label as it did before the truncation.
Let F be a j-dimensional face in V and let the vertices of its boundary be
v1, · · · ,vm. Linearly identify the m different truncated simplices correspond-
ing to each of the vertices v1, · · · ,vm along their (n− j)-dimensional faces
labeled with the same label as F . For each face F in V, perform these iden-
tifications. This produces an abstract complex D which we call the drilled
Delaunay complex.

Proposition 6.2. The drilled Delaunay complex D produces an n-dimensional
manifold with boundary. For k < n− 1, each boundary component is home-
omorphic to Rk × Sn−k−1, while for k = n− 1, each boundary component is
homeomorphic to Rn−1. The drilled Delaunay complex is homeomorphic (in
an orientation preserving way) to a closed regular neighborhood of S ⊂ Hn,
the union of all faces of V. Thus, the interior of the drilled Delaunay com-
plex is homeomorphic to Hn −

⋃
Π∈P

Π.

Proof. Each truncated simplex in D is homeomorphic (in an orientation pre-
serving way) to a closed regular neighborhood of the corresponding vertex
of V. The interior of each truncated simplex is obviously locally homeo-
morphic to Rn. For any j-dimensional non-truncation face of one or more
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truncated simplices, the gluing pattern forces the link to be combinatorially
equivalent to the boundary of one of the (n− j)-dimensional faces of V, and
thus the link is homeomorphic to Sn−j−1. Thus, a regular neighborhood of
the interior of a j-dimensional non-truncation face of D is homeomorphic
to Bn−j × Rj , so is locally homeomorphic to Rn. Any point in the interior
of a truncation face obviously has a neighborhood homeomorphic to an n-
dimensional half ball. Any point which lies on the boundary of a truncation
face will also lie in the boundary of some non-truncation face. We’ve already
determined that the link of a non-truncation face is a sphere, so such a point
has a neighborhood homeomorphic to an n-dimensional half ball.

By construction, the union of the spines of the truncated simplices will
be homeomorphic to S. Because V is standard, we could construct a closed
regular neighborhood of S that could be viewed as a (topological) complex
of truncated simplices with a gluing pattern identical to that of D. Thus,
D is homeomorphic to a closed regular neighborhood of S ⊂ Hn. Finally,
each boundary component of a closed regular neighborhood of S will be
homeomorphic to a component of the boundary of some n-dimensional cell
of V. The boundary of any n-dimensional cell of V is homeomorphic to
Sn−k−1 × Rk. �

Definition 6.3. Define a map ψ : D → Hn by declaring that restricted
to any one truncated simplex of D, ψ is the map given by Theorem 4.12,
using the flats of the simplex’s label. Where different simplices intersect, the
respective maps will agree, so ψ is continuous.

We define an equivalence relation on D to collapse the boundary.

Definition 6.4. For points x and y in the boundary of D, we say that
x ∼ y if there is a path γ from x to y lying entirely within the boundary of
D and such that ψ is constant along γ. Points not on the boundary of D are
equivalent to only themselves.

Proposition 6.5. Every ∼ equivalence class along the boundary of D is
compact.

Proof. Since ψ is continuous, the preimage of a point is closed. The equiva-
lence classes are components of the preimages through ψ of points in

⋃
Π∈P

Π.

The components of a closed subspace are themselves closed.
Since there are only finitely many Γ orbits of vertices in the standard

abstract Voronoi complex, there are also only finitely many Γ orbits of trun-
cated simplices in D. The image under ψ of any one truncated simplex is
a Delaunay cell. Since Delaunay cells are bounded, any point x ∈

⋃
Π∈P

Π

can lie in only finitely many of them. Thus, the preimage in D of any point
must be bounded. �

Proposition 6.6. For n = 3, k = 1, if C is a ∼ equivalence class along
the boundary of D which contains no vertices of truncation faces, then C is
homeomorphic to S1.
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Proof. By Theorem 4.12, the portion of C which lies within any one trun-
cation face can be chosen to be either a vertex or an affine subspace of
dimension at least 1. Since the truncation faces are 2-dimensional, that
means that the portion of C lying within any one truncation face is either a
vertex, a line segment, or the entire truncation face. By assumption, C con-
tains no truncation face vertices, so C must be a union of line segments. Any
one line segment will have two endpoints, lying in the interiors of trunca-
tion face edges. Thus, each endpoint also lies in some other truncation face,
where it must be the endpoint of a unique different line segment. Thus, C
is a compact connected 1-dimensional manifold, so must be homeomorphic
to S1. �

Proposition 6.7. For n = 3, k = 1, if C is a ∼ equivalence class along the
boundary of D which contains a vertex of a truncation face, then a regular
neighborhood of C within the boundary of D is homeomorphic to a punctured
sphere.

Proof. Each component of the boundary of D is homeomorphic to a doubly
infinite cylinder S1 × R. The equivalence class C is a connected compact
subset of S1 ×R, consisting of a union of a finite number of vertices, edges,
and triangles. Let U be a closed regular neighborhood of C. Then each
component of the boundary of U is a closed 1-dimensional manifold, so is a
circle. There are either one or two unbounded components of (S1×R)−U ,
so there are either one or two circles in the boundary of U which meet
unbounded components of (S1 × R) − U . If there is only one such circle,
then it bounds a disk within S1 × R, so U is contained within a disk. If
there are two such circles, then they bound an annulus within S1×R, so U is
contained within an annulus. Either way, U is contained within a punctured
sphere and has circles as boundary components, so U is also homeomorphic
to a punctured sphere. �

Proposition 6.8. For n = 3, k = 1, D/∼ is a 3-dimensional manifold.

Proof. Within the interior of D, ∼ identifies points with only themselves.
Thus, the quotient of the interior of D by ∼ is still the interior of D, which
is homeomorphic to H3 −

⋃
Π∈P

Π. All remaining points of D/∼ are of the

types described in the previous two propositions. A regular neighborhood of
such a point will be a regular neighborhood of the corresponding equivalence
class modulo ∼.

For an equivalence class of the type described in Proposition 6.6, a small
enough neighborhood can be chosen so that the only boundary equivalence
classes it contains are also of the same type. Thus, a regular neighborhood
in D is homeomorphic to S1 × {(x, y) ∈ B2 | y ≥ 0} with ∼ collapsing
S1 × {(x, 0) ∈ B2 } along the S1 coordinate. Thus, a regular neighborhood
of such a point in D/∼ is homeomorphic to B3.

For an equivalence class C of the type described in Proposition 6.7, a
small enough closed neighborhood U in the boundary of D can be chosen so
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that all other boundary equivalence classes that it contains are of the type
described in Proposition 6.6 and so U − C is homeomorphic to a Cartesian
product of S1 with some disjoint union of half-open line segments, in which∼
collapses along the S1 coordinate. The boundary of a regular neighborhood
of C in D will be homeomorphic to two copies of U , U1 and U2 glued along
their boundaries, which are disjoint unions of circles. We take U1 to be the
copy of U which lies in the boundary of D and U2 to be the copy which lies
in the interior of D (except where it’s glued to U1).

After the quotient by ∼, U1/∼ will contain only interior points (except
along its intersection with U2) while U2/∼ will be the boundary of the
regular neighborhood. Each component of the intersection of U2 with U1

will be a circle, which ∼ will identify to a point. By Proposition 6.7, U2 is
homeomorphic to a sphere with a finite number of open disks removed, so
collapsing each boundary component of U2 to a point produces a sphere.

Thus, the boundary of sufficiently small regular neighborhoods of C/∼ ∈
D/∼ are spheres, so at C/∼, D/∼ is locally homeomorphic to R3. �

Proposition 6.9. For n = 3, k = 1, D/∼ is homeomorphic to H3 in a
Γ-equivariant fashion, so (D/∼)/Γ is homeomorphic to H3/Γ.

Proof. Each boundary component of D is homeomorphic to a doubly in-
finite cylinder, so any sufficiently small regular neighborhood of a bound-
ary component has a boundary consisting of two doubly infinite cylindrical
components. The quotient of such a neighborhood by ∼ will be a manifold
whose boundary is a doubly infinite cylindrical component, as the cylinder
lying along the boundary of D will be collapsed to interior points. Thus,
for each component of the boundary of D, every sufficiently small regular
neighborhood of its quotient by ∼ will have cylindrical boundary. Since
D/∼ is a manifold, it must be the case that every such regular neighbor-
hood is homeomorphic to a solid doubly infinite cylinder. As the interior of
D is homeomorphic to H3 −

⋃
Π∈P

Π and each boundary component of D is

a doubly infinite cylinder, we have that D/∼ is homeomorphic to D with
a doubly infinite solid cylinder glued to each boundary component. Up to
homeomorphism, there’s only one way to do this, which is to attach a regular
neighborhood of each Π ∈ P to H3 −

⋃
Π∈P

Π.

The action of Γ on D and ∼ is compatible with the action of Γ on H3, so
D/∼ is homeomorphic to H3 in a Γ-equivariant fashion �

Theorem 6.10. For n = 3, k = 1, the map ψ : D → H3 induces a degree 1
map from (D/∼)/Γ to H3/Γ.

Proof. On any given ∼ equivalence class, ψ is constant. Thus, ψ induces a
map ψ′ : D/∼ → H3. There is a Γ action on D/∼ and ψ is Γ-equivariant,
so ψ′ is Γ-equivariant. The homeomorphism χ : D/∼ → H3 produced
by Proposition 6.9 is also Γ-equivariant, so the straight line homotopy be-
tween ψ′ and χ will also be Γ-equivariant. Thus, the induced maps ψ′′ :
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(D/∼)/Γ → H3/Γ and χ′ : (D/∼)/Γ → H3/Γ are homotopic, so have the
same degree.

Restricted to the interior of D (where ∼ equivalence classes are single
points), χ is orientation preserving. Thus, the degree of χ′ and ψ′ must be
1. �

The map ψ is constructed using the map from Theorem 4.12, which is
sometimes orientation reversing. Also, the Voronoi decomposition for lines
in H3 can have multiple vertices with the same label. Thus, there might be
multiple truncated simplices in D which are mapped to the same cell in H3.

Corollary 6.11. Counting cells by their multiplicities and orientations, for
n = 3, k = 1, almost every point of H3 is in a total of one open 3-dimensional
Delaunay cell.

Proof. At a regular value x ∈ H3/Γ of ψ′′, we can compute the degree of
ψ′′ by summing the signed orientation of ψ′′ over ψ′′−1(x). The only points
of H3/Γ which possibly aren’t regular values are those which either lie in
one of the flats of the arrangement P or those which lie within some closed
Delaunay cell of dimension less than n. �

We now prove a similar result for the case k = n − 1. This is a general-
ization of Marshall and Martin’s 2-dimensional result [MM03].

Proposition 6.12. For k = n − 1, the map ψ produced by Definition 6.3
maps the interior of D to Hn −

⋃
Π∈P

Π.

Proof. Any point in the interior of D is either interior to some T in D or on
a non-truncation face of some T in D, so is mapped by ψ to a point in some
closed ideal Delaunay cell. Let the label for T be {Π1, · · · ,Πn+1}. Let v
be the Voronoi vertex corresponding to T . The flats Π1, · · · ,Πn+1 separate
Hn into various connected components. Since v is equidistant from the flats
Π1, · · · ,Πn+1 and is not closer to any other flat in P, from v one can draw
a line segment to any flat Πi (1 ≤ i ≤ n+1) without crossing any other flats
in P. Thus, v must lie in the unique component U of Hn −

⋃
Π∈P

Πi which

contains all of Π1, · · · ,Πn+1 within its boundary.
Let x be a point which is not in the closure of U . Then there is some

Π ∈ P which separates x from U . The flat Π then separates x from
either all of π1(x), · · · , πn+1(x), or all but one of π1(x), · · · , πn+1(x) (if
Π is one of Π1, · · · ,Πn+1), so the relative interior of the convex hull of
π1(x), · · · , πn+1(x) is on the opposite side of Π from x. Then x does not lie
in the closed ideal Delaunay cell. Thus, the closed Delaunay cell lies within
the closure of U .

Let x be a point in the closed ideal Delaunay cell and suppose that there
is some Π ∈ P which contains x. Then x lies within the relative interior of
the convex hull of some non-singleton subset of π1(x), · · · , πn+1(x), without
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loss of generality π1(x), · · · , πm(x) and Π is not one of Π1, · · · ,Πm. How-
ever, since Π is (n− 1)-dimensional, contains none of π1(x), · · · , πm(x), and
yet intersects the interior of their convex hull, it separates some of them
from each other. However, that is impossible since we know that there is a
connected component U of Hn −

⋃
Π∈P

Π which contains all of Π1, · · · ,Πn+1

within its boundary. �

Theorem 6.13. Counting cells by their multiplicities and orientations, for
k = n− 1, almost every point of Hn is in a total of one open n-dimensional
Delaunay cell.

Proof. Cut Hn/Γ along the compact connected (n− 1)-dimensional surface( ⋃
Π∈P

Π

)
/Γ, to produce a manifold N with two boundary components each

isometric to

( ⋃
Π∈P

Π

)
/Γ.

The interior of D is homeomorphic in a Γ-equivariant orientation pre-
serving fashion to Hn −

⋃
Π∈P

Π. Restricted to the interior of D, ψ is also a

Γ-equivariant map to Hn−
⋃

Π∈P
Π. Thus, there is a Γ-equivariant homotopy

between the two maps. For any one connected component of Hn −
⋃

Π∈P
Π,

each boundary component of its closure is some Π ∈ P. The quotient of this

flat by its stabilizer in Γ will be isometric to

( ⋃
Π∈P

Π

)
/Γ.

Each boundary component ofD is homeomorphic to an (n−1)-dimensional
flat. The quotient of such a flat by its stabilizer in Γ will be homeomorphic

to

( ⋃
Π∈P

Π

)
/Γ.

Then ψ : D → Hn induces a map (of manifolds with boundary) ψ′ :
D/Γ → N . This map ψ′ will be homotopic to a homeomorphism, so has
degree 1, as a map of compact manifolds with boundary.

As in the proof of Corollary 6.11, each regular value of ψ′ must be in a
total of one Delaunay cell, when counting cells according to multiplicities
and orientations. The only points in N which possibly aren’t regular are
either in some Π ∈ P or in some open ideal Delaunay cell of dimension less
than n, so almost every point in N is a regular value.

Since Hn/Γ is just N with its two boundary components glued together,
we have that almost every point of Hn/Γ is in one Delaunay cell. Lifting
the map, almost every point of Hn is in one Delaunay cell �
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