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Abstract. We show that the existence of a maximal embedded tube in

a hyperbolic n-manifold implies the existence of a certain conical region.
One application is to establish a lower bound on the volume of the region

outside the tube, thereby improving estimates on volume and estimates

on lengths of geodesics in small volume hyperbolic 3-manifolds. We
also provide new bounds on the injectivity radius and diameter of an

n-manifold.

1. Introduction

Lately, there has been much interest in tubes which embed in hyper-
bolic 3-manifolds. Among the results addressing either the consequences of
or existence of such tubes are [Gab97],[GMT],[GMM],[GM98],[Mey87], and
[Prz00]. Many of these results establish properties of the smallest volume
hyperbolic orientable 3-manifold. The orientability condition is included
since one of the main results [GMT] requires it to prove the existence of

a tube of radius log 3
2
. Hence we shall take the de�nition of a manifold to

include orientability. Speci�cally, Gabai, Meyerho�, and Thurston [GMT]
prove:

Theorem 1.1. [GMT] Every closed orientable hyperbolic 3-manifold except

Vol3 contains an embedded tube of radius at least 0:52959 : : : about its short-
est geodesic. Unless the shortest geodesic has length greater than 1:0595 : : :,

there is a tube of radius
log 3
2

about this geodesic.

We prove that if there is a maximal embedded tube of radius r then there
is also another region W , de�ned later, which also embeds. This region is
basically the union of two cones, whose shapes are determined by r. In
addition, we prove that a certain portion of the region W lies outside of the
tube of radius r.
In each of [GM98],[Prz00], and [GMM], lower bounds on tube volume

were used to provide lower bounds on manifold volume. As we provide a
lower bound on the volume outside the tube, these earlier results may be
augmented. In particular, this author showed [Prz00] that any orientable
hyperbolic 3-manifold has volume at least 0:276, which may now be improved
to 0:28 and Gabai, Meyerho� and Milley [GMM] showed that the smallest
volume orientable hyperbolic 3-manifold contains no geodesic of length less
than 0:069, which we may now improve to 0:09.
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The techniques we use are not speci�c to 3-dimensions. Thus, we develop
the result in arbitrary dimensions, even though most of our applications
are speci�cally 3-dimensional. We do provide a few simple n-dimensional
applications. Using the relative simplicity of the region W , we are able to
determine the radius of the largest ball which �ts inside W . This ball then
embeds in the manifold. This allows us to place a lower bound on the radius
of the largest ball embedded in a hyperbolic manifold.
Finally, we locate a point in W for which we can determine the distance

to the geodesic. This then allows us to place a lower bound on the diameter
of the manifold.

2. Establishing Precise Invariance

Let Mn be a hyperbolic n-manifold with fundamental group �. It is
known that if M is closed then the shortest geodesic in M does not intersect
itself and that there is thus an embedded tube about this geodesic. Even
if M is not closed, there is often an embedded tube about some geodesic.
Choosing some such geodesic, let r be the radius of the maximal embedded
tube. We now change our viewpoint to that of the universal cover ofM , Hn .
The group � can be considered as a subgroup of Isom+(Hn). The geodesic
in M may be lifted to a line in H

n and the maximal tube may be lifted to
the set of points within r of this line. The � action will mean that there
are many choices of how to perform this lift. Let T1 be some such lift of the
maximal embedded tube and let T2 be another such lift which intersects T1
in a single point. We will denote the lines at the core of T1 and T2 as l1 and
l2, respectively. As T1 and T2 intersect at a single point, l1 and l2 are at a
distance of 2r from one another. Let q1 and q2 be the points at which their
common perpendicular intersects l1 and l2, respectively. Let Bi be a ball
of radius r about qi. We construct a set which we shall show is precisely
invariant under the action of �.

De�nition 2.1. Let X1 be the union of all line segments having one end-

point at q1 and the other endpoint in B2. Let X2 be the union of all line

segments having one endpoint at q2 and the other endpoint in B1. De�ne

the set W = X1 \X2.

The set W will be two identical cones which have been attached along
their bases. To be speci�c, we are de�ning a cone in H

n to be formed
by an n � 1 dimensional ball and a line segment, called the altitude, with
one endpoint lying at the center of the ball such that the line segment is
perpendicular to the n� 1 dimensional hyperplane containing the ball. The
set of points in the cone is the union of all line segments joining the other
end of altitude to the ball. This is a higher dimensional version of a right
circular cone.
We �rst prove a simple result based on this.

Lemma 2.2. If p 2 W then min
i2f1;2g

dist(p; qi) < 2r.
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Proof. The points which are farthest from both q1 and q2 will be the points
on the boundary of the base of the cones. Thus, it suÆces to let p be one
of these points. Then the ray ~q1p will intersect B2 tangentially. Taking
this ray, the segment q1q2, and the perpendicular dropped from q2 to ~q1p,
we form a right triangle. The hypotenuse will be the segment q1q2 so will
have length 2r. The point p lies on one of the legs of the triangle. Thus
dist(p; q1) < 2r.

We wish to show that W is precisely invariant under the � action. Most
of the work lies in proving the following:

Proposition 2.3. Let B3 be a ball of radius r in H
n whose interior is dis-

joint from B1 and B2. Then for any p 2 W , we have that dist(p; B3) �
max
i2f1;2g

dist(p; Bi). Equality holds only if p 2 @W .

Proof. Let q3 be the center of B3. By the preceding lemma, p 6= q3 and, in
fact, there is a positive lower bound on the possible distance from p to q3.
Without loss of generality, we may assume that q3 is as close to p as allowed.
Certainly, if B3 intersects neither B1 nor B2, then it can be moved closer to
p. So we may assume that B3 is adjacent to at least one of B1 and B2.
Suppose for the moment that B3 intersects B1, but not B2. Then, unless

q1; q3 and p are colinear, we may move B3 closer to p. So we take this as an
additional assumption. If q1 lies between p and q3, then clearly p is closer to
q1 and q2 than to q3. Since p is within 2r of q1, q3 cannot lie between p and
q1. This leaves only the possibility that p lies between q1 and q3. However,
as was shown in the proof of the preceding Lemma, there is a point of B2

within 2r of q1 along the ray ~q1p. This point would be in the interior of B3,
a contradiction. The case in which B3 intersects B2 but not B1 is dealt with
similarly.
Hence, we may assume that B3 intersects both B1 and B2. Since B1; B2;

and W have a rotational symmetry about q1q2, there will be an n�2 sphere
of possible locations for q3. Along this sphere, the closest point to p will be
one that lies in the plane � containing q1; q2; and p. We have now reduced
the situation to a two dimensional problem, illustrated by the following
diagram.

B1∩Π

B2∩Π

B3∩ΠW∩Π

Figure 1
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However, it is obvious in this situation that dist(p; q3) � max
i2f1;2g

dist(p; qi).

It is also easy to see that equality holds only when p is equidistant from q3
and either q1 or q2 and hence lies on @W .

We now prove a slightly stronger result.

Proposition 2.4. Let T3 be a tube of radius r in H
n whose interior is dis-

joint from T1 and T2. Then for any p 2 W , we have that dist(p; T3) �
max
i2f1;2g

dist(p; Ti). Equality holds only if p 2 @W

Proof. Let l3 be the axis of T3 and let q3 be the point of l3 which is closest
to p. Taking B3 to be the ball of radius r about q3, we have that Bi � Ti.
The interior of B3 will then be disjoint from B1 and B2. Since dist(p; Ti) =
dist(p; li)�r � dist(p; qi)�r, it would be suÆcient to prove that dist(p; l3) =
dist(p; q3) � max

i2f1;2g
dist(p; qi). However, this is the result of the preceding

proposition.

We are now ready to prove precise invariance.

Theorem 2.5. The various translates of W under elements of � have no

intersections, except at boundary points.

Proof. A point p in the interior of W is closer to T1 and T2 than to any
other � translates of T1. If for some 
 2 �, 
(p) 2 intW then 
(p) is closer
to T1 and T2 than to any other � translate of T1. However, since 
 is an
isometry, 
(p) is closer to 
(T1) and 
(T2) than to any other � translates of
T1. Hence, 
 carries T1 and T2 to, in some order, T1 and T2. This implies
that T1 \ T2 is �xed by 
. The only element of � which has �xed points is
the identity.

A simple consequence of this is:

Corollary 2.6. The interior of W projects injectively to M . The portion

of W lying outside T1 [ T2 projects to a set which does not intersect the

projection of T1.

Proof. That the interior of W projects injectively is obvious. To prove the
remaining statement, let p be a point lying in W n (T1[T2). If p were inside
some � translate of T1, it would be closer to that tube than to T1 and T2,
which contradicts Proposition 2.4.

3. Hyperbolic Trig and Integration

Many of our applications will require complicated 3-dimensional compu-
tations. Rather than interrupt the 
ow of thought when we develop these
applications, we will get the computations out of the way now, under the
guise of computing the volumes of the 3-dimensional version of W and a
speci�c region within W .
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As was mentioned earlier, W is the union of two identical cones. Our �rst
step will be to determine the exact shape of the cones. Let C denote the
cone.

Proposition 3.1. The altitude of C has length r. The vertex angle � is

sin�1 sinh r
sinh2r

and the slant height is sinh�1 2 sinh rp
3

.

Proof. It is obvious that the altitude of C is r. To determine the vertex an-
gle, we consider that the side of the cone (when extended) will be tangent to
a ball of radius r whose center is at a distance 2r from the vertex of C. This
provides a right triangle whose hypotenuse is 2r and with one of the angles
congruent to the vertex angle of C. The leg opposite the vertex angle is a
radius of the ball so is of length r. The Law of Sines then determines the ver-
tex angle. To determine the slant height, we consider a right triangle whose
hypotenuse is the slant height. One angle is the vertex angle and the adja-
cent side has length r. Using the identity cos(angle) = tanh(adj) coth(hyp),

we compute the slant height to be tanh�1 tanhr

cos sin�1 sinh r
sinh 2r

= sinh�1 2 sinh rp
3

.

We note that he preceeding result does not depend on dimension. At this
point we start to consider only the 3-dimensional case. We now derive a
formula for the volume of a cone.

Proposition 3.2. A right circular cone of altitude r and vertex angle � has

volume � cos� tanh�1 tanh r
cos�

� �r.

Proof. We will represent the volume as a triple integral in spherical coordi-
nates (�; �; �) where � is the distance to the origin, � is the angle from some
�xed line, and � is an angle measured in a plane perpendicular to the �xed
line. The necessary volume element is sin � sinh2 � d� d� d�.
We place the cone so the vertex lies at the origin and the altitude lies

along the � = 0 direction. In an identical computation to the one performed
in the preceding proof, we see that � varies between 0 and tanh�1 tanh r

cos�
. So

the volume VC(r) is

VC(r) =

Z 2�

0

Z �

0

Z tanh�1 tanh r
cos �

0

sin� sinh2 � d� d� d�

= �

Z �

0

Z tanh�1 tanh r
cos�

0

sin�(cosh 2�� 1) d� d�

= �

Z �

0

sin� cos� tanh r

cos2 �� tanh2 r
� sin� tanh�1

tanh r

cos�
d�

At this point, we perform the substitution u = cos� and integrate the
second half by parts.
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VC(r) = �

Z 1

cos�

u tanh r du

u2 � tanh2 r
� �

Z 1

cos�

tanh�1
tanh r

u
du

= �

Z 1

cos�

u tanh r du

u2 � tanh2 r

��
 
u tanh�1

tanh r

u

����
1

cos�

+

Z 1

cos�

u

1� tanh2 r
u2

� tanh r
u2

du

!

= � cos� tanh�1
tanh r

cos�
� �r

We may now compute the volume of W .

Proposition 3.3. The volume of W is

2VC(r) = �
p
4� sech2 r sinh�1

2 sinh rp
3

� 2�r:

Proof. This is a simple consequence of plugging the relevant vertex angle
and altitude into our cone volume formula and then simplifying.

One of our main interests will be determining the volume of the region
of W which lies in neither T1 nor T2. As the actual value is diÆcult to
compute, we determine a lower bound. We do this by determining an upper
bound on the volume of W \ T1. First, we give an intractable, but exact,
formula for the volume.

Proposition 3.4. The volume of W \ T1 is

V (W \ T1) =
Z 2�

0

Z �

0

Z sinh�1 sinh rp
1�cos2 � sin2 �

0

sin� sinh2 � d� d� d�:

Proof. Again we work in spherical coordinates. The axis of T1 is perpendic-
ular to the altitude of the cones in W . Placing the cone as before, we may
take the axis of T1 to lie in the � = �

2
plane in the direction of � = 0 (and

thus also � = �). The bounds on � and � are easy to establish. Also, the
lower bound on � is clearly 0. To determine the upper bound, we will have
to do a small amount of work. First we determine the angle � between the
axis of T1 and the line segment joining the origin to (�; �; �). Of course, �
will not a�ect this angle. As is readily seen from the Poincar�e disk model,
we could just as well perform this computation in Euclidean space. As
the spherical coordinates (�; �; �) correspond to the Cartesian coordinates
(� cos� sin �; � sin� sin �; � cos�), the angle between this vector and the x-
axis is given by cos� = cos � sin �. Returning to hyperbolic geometry, we
are now able to compute an upper bound on �. We need to know how far
one can travel along a line at an angle of � from the axis of T1, before one
is at a distance of r from this axis. A quick application of the Law of Sines
shows that sinh � � sinh r csc�.
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This expression is diÆcult to deal with so we make an approximation to
simplify matters.

Proposition 3.5. The volume of W \ T1 is less than

VT (r) = � sinh r
�
csc tan�1

cos�

sinh r
� csc tan�1 csch r

�
� �r+ � cos� sinh�1

sinh r

cos�

Proof. Since 1� cos2 � sin2 � � 1� sin2 � = cos2 �, we may say that

V (W \ T1) �
Z 2�

0

Z �

0

Z sinh�1 sinh r
cos�

0

sin� sinh2 � d� d� d�

= �

Z �

0

Z sinh�1 sinh r
cos �

0

sin�(cosh 2�� 1) d� d�

= �

Z �

0

sin�

0
@sinh r

cos�

s
1 +

sinh2 r

cos2 �
� sinh�1

sinh r

cos�

1
A d�

At this point, we make the substitution u = cos� and then integrate the
second half by parts.

V (W \ T1) � �

Z 1

cos�

sinh r

u

s
1 +

sinh2 r

u2
du� �

Z 1

cos�

sinh�1
sinh r

u
du

= �

Z 1

cos�

sinh r

u

s
1 +

sinh2 r

u2
du�

�

0
@u sinh�1

sinh r

u

����1
cos�

+

Z 1

cos�

u �
sinh r
u2q

1 + sinh2 r
u2

du

1
A

= �

Z 1

cos�

sinh3 r

u2
p
u2 + sinh2 r

du� �r + � cos� sinh�1
sinh r

cos�

Making the substitution u = sinh r tan t allows us to complete the inte-
gration.

V (W \ T1) � �

Z tan�1 cschr

tan�1 cos�
sinh r

sinh r cos t

sin2 t
dt � �r+ � cos� sinh�1

sinh r

cos�

= � sinh r
�
csc tan�1

cos�

sinh r
� csc tan�1 csch r

�
� �r +

� cos� sinh�1
sinh r

cos�

This now allows us to compute a lower bound on the volume of the region
of a manifold lying outside a tube of radius r.
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Theorem 3.6. Let M be an orientable hyperbolic 3-manifold containing an

embedded tube of radius r about one of its geodesics. Then the region of M

lying outside of this tube has volume at least 2(VC(r)� VT (r)).

Proof. In the case in which the embedded tube is of maximal radius, we
have already shown that W n (T1 [ T2) projects injectively to M and does
not intersect the tube. Thus, we need only consider the case in which the
tube is not of maximal radius. Expand the tube until it is of maximal radius
R. Then again we know that there is a region of volume 2(VC(R)� VT (R))
lying outside the maximal tube. All we need to note are that this region
is, of course, outside of the original tube and that 2(VC(r) � VT (r)) is an
increasing function of r.

We perform one last calculation to determine the limiting behavior.

Proposition 3.7. lim
r!1

2(VC(r)� VT (r)) = �(log 4
3
� 1

4
).

Proof.

lim
r!1

2(VC(r)� VT (r))

= lim
r!1

�
p
4� sech2 r sinh�1

2 sinh rp
3

�2� sinh r
 p

sinh2 r + cos2 �

cos�
� cosh r

!
� 2� cos� sinh�1

sinh r

cos�

= lim
r!1

�
p
4� sech2 r(r+ log

2p
3
)

�2� sinh r
cos�

 
sinh2 r + cos2 �� cosh2 r cos2 �p
sinh2 r+ cos2 �+ cosh r cos�

!
� 2� cos�(r � log cos�)

= 2� log
2p
3
� 2� lim

r!1

sinh2 r � sinh2 r cos2 �q
1 + cos2 �

sinh2 r
+ coth r cos�

= 2� log
2p
3
� 2� lim

r!1

sinh2 r sin2 �

2

= 2� log
2p
3
� �

4
= �(log

4

3
� 1

4
)

4. Applications

We start by looking for embedded balls in hyperbolic manifolds.

Proposition 4.1. If a hyperbolic manifold contains a tube of radius r about

a geodesic then there is an embedded ball of radius sinh�1(1
2
tanh r).
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Proof. Let r0 be the radius of the maximal tube about this geodesic. The
shortest distance from the center of W to the boundary will be achieved by
dropping a perpendicular from the center to the boundary. This will form

a right triangle with hypotenuse r0, one angle equal to sin�1 sinh r0

sinh2r0
and the

opposite leg the desired ball radius. It is easy to see that the radius of the

ball is sinh�1 sinh2 r0

sinh2r0
= sinh�1(1

2
tanh r0), which is clearly increasing in r0 and

hence is at least sinh�1(1
2
tanh r).

This result allows us to prove two corollaries, one 3-dimensional and the
other n-dimensional.

Corollary 4.2. Every closed orientable hyperbolic 3-manifold contains a

ball of radius at least sinh�1 1
4
= 0:24746 : : : .

Proof. If the manifold contains a tube of radius log3
2
, then it must contain a

ball of radius at least sinh�1 1
4
. Thus we need only note that the exceptional

cases to the existence of the log 3
2

tube also contain such a ball.

For the n-dimensional result, we �rst cite a theorem of Cao and Waterman
[CW98].

Theorem 4.3. Let f be a geodesic in a complete hyperbolic n-manifold,

with k =
�
n�1
2

�
and �(p) =

R �
2

0 sinp x dx. If the length l of f , is at most

2�(k+1)

�k

�p
2�1
4

� k+1

2

, then there exists an embedded solid tube around f whose

radius r satis�es

sinh2 r =
1

4

�
�kl

2�(k+ 1)

�� 2

k+1

 
1� 4

�
�kl

2�(k+ 1)

� 2

k+1

! 1

2

� 1

2
:

Further, it is easy to see that r is a decreasing function of l. This gives:

Corollary 4.4. If Mn is a complete hyperbolic n-manifold then either the

shortest geodesic has length at least
2�(k+1)

�k

�p
2�1
4

� k+1

2

or there is an em-

bedded ball of radius 0:37. As a consequence, every complete hyperbolic n-

manifold contains a ball of radius
�(k+1)

�k

�p
2�1
4

� k+1

2

.

Proof. If the length l of the shortest geodesic is less than
2�(k+1)

�k

�p
2�1
4

� k+1

2

then there is a tube whose radius r satis�es sinh2 r = 1p
2�1

p
2�

p
2� 1

2
=

1:3477 : : : . This leads to a ball of radius at least 0:37 : : : .

If the shortest geodesic has length at least 2�(k+1)

�k

�p
2�1
4

� k+1

2

then there

must be a ball of radius
�(k+1)

�k

�p
2�1
4

� k+1

2

about every point in M . Since

this amount is smaller than 0:37 we get the desired lower bound on ball
radius.
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We may state a corollary to this corollary:

Corollary 4.5. If Mn is a complete hyperbolic n-manifold then Vol(M) �

Vn(1)

�
�(k+1)

�k

�p
2�1
4

� k+1

2

�n

where Vn(1) is the volume of an n-dimensional

Euclidean ball of radius 1.

Proof. We know that there is an embedded ball of radius
�(k+1)

�k

�p
2�1
4

� k+1

2

.

The volume of a hyperbolic ball of a given radius is greater than the volume
of the corresponding euclidean ball of the same radius. Thus we may use
the Euclidean volume formula as a lower bound.

In addition to embedded balls, we can consider the diameter of a manifold.

Proposition 4.6. If a hyperbolic manifold M contains an embedded tube of

radius r about one of its geodesics then

diam(M) � sinh�1

0
@2 sinh rp

3

s
1� sinh2 r

sinh2 2r

1
A :

Proof. As we have shown, W embeds in M . We have also shown that the
points of W are closer to T1 or T2 than any other �1(M) translate. Let
us consider the points on the boundary of the bases of the cones in W .
Among these points, the ones which are closest to l1 will lie in the plane
containing both l1 and the common perpendicular to l1 and l2. Working
within this plane, we have a point at a distance of sinh�1 2 sinh rp

3
from q1

and such that the angle of declination from l1 is
�
2
� sin�1 sinh r

sinh2r
. Thus, we

may use the Law of Sines to see that the distance from this point to l1 is

sinh�1
�
2 sinhrp

3

q
1� sinh2 r

sinh2 2r

�
. The point could not be any closer to l2 and

thus l1 is closer to the point than any other � translate.

From this point on, we restrict our attention to the 3-dimensional case.
We �rst provide a very small improvement of an earlier result of this author
[Prz00].

Proposition 4.7. Every closed orientable hyperbolic 3-manifold has volume

at least 0:28.

Proof. The exceptional cases to the existence of a log3
2

tube all have volume

at least 1:01. In [Prz00], it is shown that a tube of radius at least log3
2

in
an orientable hyperbolic 3-manifold has volume at least 0:27666. Because
of Theorem 3.6, we know that the region outside of the tube has volume at
least 0:00485.

We now improve a recent result of Gabai, Meyerho�, and Milley[GMM].
First, we state the relevant theorems from their paper:
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Theorem 4.8. [GMM] If a maximal tube in a complete orientable hyper-

bolic 3-manifold has length l and radius r and a value � is chosen less than

2r then l is at least as large as the smaller of
p
3 cosh(2r)

2� sinh(2r)

�
cosh�1

�
sinh2(2r) + cosh(2r+ �)

cosh2(2r)

��2
and

1

cosh(2r) sinh(2r)

 
R2r;0

2

4
+

�
R2r;� �

R2r;0

2

�2!

where

Rt;� =
p
sinh(2r) cosh(2r) coth(2r+ �) cosh�1

�
sinh(2r) sinh(2r + �) + cosh(t)

cosh(2r) cosh(2r+ �)

�
:

For their purposes, the value � = 0:3 was optimal. They then established
various properties of these functions with � = 0:3. We will choose � = 0:293.
Rather than reproduce their e�orts, we say simply that with one exception,
the exact same arguments would work for this new value of �. The exception
is that the second function is decreasing so long as r � 0:6 whereas in [GMM]
it is shown that this function is invertible whenever its value is less than
0:103.

Theorem 4.9. The shortest geodesic in the smallest volume orientable hy-

perbolic 3-manifold has length at least 0:09.

Proof. Suppose that there is a geodesic of length at most 0:09. In [GMM],
it is shown that if a geodesic has length less than 0:10438 then there is a
tube of radius at least 1:02 about it. Of course, this applies to our geodesic.
By multiplying the length estimates in Theorem 4.8 by � sinh2 r we obtain

lower bounds on tube volume. Thus, we can say that with � = 0:293, a tube
of radius at least 1:332 has volume at least 0:87906. By Theorem 3.6, the
volume outside this same tube is at least 0:06368. Thus the manifold has
volume at least 0:94274 which is greater than the volume of the Weeks
manifold. Thus, 1:02 � r � 1:332.
Again using Theorem 4.8, we can say that l � 0:09009, a contradiction.

It is also possible to improve estimates regarding noncompact manifolds.
We would like to thank Peter Shalen for suggesting the following application.

Proposition 4.10. If an orientable noncompact hyperbolic 3-manifold M

has betti number at least 4 then Vol(M) � �(log 4
3
+ 3

4
)

Proof. In [ACCS96], it is established that there is a sequence of manifolds
Mn such that �1(Mn) converges geometrically to �1(M). Further, Vol(M) >
Vol(Mn) and the limit as n goes to in�nity of ln, the length of the shortest
geodesic in Mn is 0. It is also shown that Mn contains an embedded tube
of volume at least V (ln) where V is a speci�c function they develop. All
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that we need to know about V is that lim
l!0

V (l) = �. As ln goes to 0, the

radius of the maximal embedded tube goes to 1. This information is used
to establish � as a lower bound on volume.
In Mn, by Theorem 3.6, we can establish a lower bound on the volume

outside of the maximal tube. As n ! 1, this lower bound will approach
lim
r!1

2(VC(r) � VT (r)) = �(log 4
3
� 1

4
). Thus, we may say that Vol(M) =

lim
n!1

Vol(Mn) � � + �(log 4
3
� 1

4
) = �(log 4

3
+ 3

4
).
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