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Abstract. We consider packings of radius r collars about hyperplanes
in Hn. For such packings, we prove that the Delaunay cells are truncated
ultra-ideal simplices which tile Hn. If we place n+1 hyperplanes in Hn

each at a distance of exactly 2r to the others, we could place radius
r collars about these hyperplanes. The density of these collars within
the corresponding Delaunay cell is an upper bound on density for all
packings of radius r collars.

1. Introduction

In Euclidean geometry, an arrangement of disjoint codimension 1 hyper-
planes must consist of parallel hyperplanes. If the hyperplanes were all at
a distance of at least 2r from each other, we could inflate a collar of radius
r about each hyperplane. These collars would have disjoint interiors. One
can easily see that the densest packing of such collars is to have each collar
immediately adjacent to two others, completely filling Euclidean space.

In hyperbolic geometry, it’s actually impossible to fill space with disjoint
collars around hyperplanes. Thus, the optimal density will be less than 1,
and there is a packing problem to solve.

In an earlier paper [Prz10], we defined Delaunay cells for arrangements of
flats in Hn. Now, we prove that in the specific case of codimension 1 flats,
the Delaunay cells are truncated ultra-ideal simplices and that they tile Hn.

Theorem 3.5. Let Π1, · · · ,Πm+1 in Hn be disjoint hyperplanes which are
equidistant from some point p. If their closed Delaunay cell is m-dimensional,
then it is a truncated ultra-ideal simplex. Each truncation face is con-
tained in one of the Πi. The truncation faces are perpendicular to all non-
truncation faces (of any dimension) that intersect them.

Theorem 3.8. Let P be a symmetric cocompact arrangement of hyperplanes
in Hn Then almost every point of Hn is in exactly one open n-dimensional
Delaunay cell. In other words, the Delaunay cells tile Hn.

We will provide an upper bound on density for packings of collars about
hyperplanes. This upper bound is achieved by placing n+ 1 hyperplanes in
Hn, each at a distance of exactly 2r from the others. We form a Delaunay
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cell which is a truncated regular ultra-ideal simplex and denote the density
within this cell as dn(r).

Corollary 5.11. For packings of radius r collars about hyperplanes in Hn,
the density is at most dn(r).

This generalizes a two-dimensional result of Marshall and Martin [MM03].
In Section 2, we review the definition of Delaunay cells from [Prz10]. In

Section 3, we prove Theorems 3.5 and 3.8. In Section 4, we use orthoschemes
to study density and demonstrate that orthoschemes with shorter sides will
achieve higher densities. Finally, in Section 5, we prove Corollary 5.11.

2. Definition of Delaunay cells

Here, we take some of the definitions and results from [Prz10] and con-
dense them into the form needed for this paper. We provide no proofs here,
but the proofs can be found in [Prz10]. When we need to use a model of
Hn, we use the Klein model, Dn.

Definition 2.1.

(1) If a hyperplane Π doesn’t pass through the origin in Dn, then we
represent Π by a vector c ∈ Dn, the closest point on Π to 0. We will
avoid considering hyperplanes that do pass through 0 and will often
implicitly assume that hyperplanes don’t pass through 0.

(2) The function π : Hn → Π projects each point orthogonally onto Π.

In the Klein model, π(x) = c + 1−|c|2
1−x·c

(
x− x·c

|c|2 c
)

Definition 2.2. A point x in Rn or Hn is surrounded by the points p1, · · · , pm+1

if p1, · · · , pm+1 are in general position and x lies in the relative interior of
their convex hull.

Lemma 2.3. The point x ∈ Rn is surrounded by the points v1, · · · ,vm+1

(using cyclic indices mod m+1) if and only if the multi-vectors (−1)mj
m∧
i=1

(vj+i−

x) for all values of j are nonzero and are positive scalar multiples of each
other.

Definition 2.4. Given pairwise disjoint hyperplanes Π1, · · · ,Πm+1 ∈ Hn

(for 1 ≤ m ≤ n) and the corresponding hyperbolic projection functions
πi : Hn → Πi, we define

(1) the open m-dimensional Delaunay cell associated to these hyper-
planes to be {x ∈ Hn |x is surrounded by the points π1(x), · · · , πm+1(x)},

(2) the closed m-dimensional Delaunay cell associated with the hyper-
planes to be the closure of the union of all open Delaunay cells
associated with any subset of {Π1, · · · ,Πm+1}
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When we say that two hyperplanes are disjoint, we mean that they have
no intersection in Hn or in ∂Hn. While Delaunay cells could still be defined
in the event of hyperplanes which meet on ∂Hn, many of the results we
prove would require exceptional cases to handle such cells.

Lemma 2.5. If v ∈ Hn is equidistant from the disjoint hyperplanes Π1, · · · ,Πm+1

(for m ≤ n) then v lies in the component of Hn \
m+1⋃
i=1

Πi which is bounded

by all m+ 1 of the hyperplanes Π1, · · · ,Πm+1. The closed Delaunay cell lies
within the closure of this component.

In [Prz10], this Lemma was proved for m = n. The proof for m < n is
identical.

Definition 2.6. A symmetric cocompact arrangement of hyperplanes in Hn

is a collection P of hyperplanes for which

(1) any two hyperplanes in P have no points in common within Hn,
(2) there is a discrete group Γ < Isom+(Hn) such that Γ acts transitively

on P and Hn/Γ is a compact n-manifold.

Definition 2.7. Given a symmetric cocompact arrangement P of hyper-
planes in Hn, we can construct the Voronoi tessellation. Each Voronoi ver-
tex is closest to (and equidistant from) n + 1 (or more) hyperplanes. For
each vertex closest to exactly n + 1 of the hyperplanes, we form the closed
Delaunay cell of those hyperplanes. For vertices closest to more than n+ 1
of the hyperplanes, we follow a procedure for modifying the Voronoi tes-
sellation (described in detail in Section 5 of [Prz10]) to produce multiple
vertices, each associated with exactly n+ 1 of the hyperplanes, and we then
produce a Delaunay cell for each of those vertices.

Definition 2.8. We can speak of orientation within an n-dimensional De-
launay cell. Let T be the closed Delaunay cell associated with the hy-
perplanes Π1, · · · ,Πn+1, and let v be the Voronoi vertex equidistant from
Π1, · · · ,Πn+1 (we assume that such a v exists, as we wouldn’t otherwise
have a reason to construct T ). For any point x ∈ T , if the simplices
π1(x) · · ·πn+1(x) and π1(v) · · ·πn+1(v) have the same/opposite orientation,
we say that T has positive/negative (respectively) orientation at x.

For Delaunay cells associated with flats of arbitrary dimension in Hn, it’s
possible to have negatively oriented Delaunay cells. It’s also possible for
multiple copies of the same Delaunay cell to be present. Thus, we can’t
expect for the Delaunay cells to tile Hn. If we count the negatively oriented
cells negatively and we count each occurrence of the repeated cells, we have
the following result.

Theorem 2.9. Let P be a symmetric cocompact arrangement of hyperplanes
in Hn. Counting with multiplicities and orientations, almost every point of
Hn is in a total of one open n-dimensional Delaunay cell.
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In the following section, we will prove that for arrangements of hyper-
planes, there are neither negatively oriented Delaunay cells nor repeated
Delaunay cells.

3. Structure of Delaunay cells

In [Prz10], we proved that there is a map from a closed truncated sim-
plex to the closed Delaunay cell, and that this map sends edges to one-
dimensional Delaunay cells, 2-faces to two-dimensional Delaunay cells, etc.
For arrangements of flats of arbitrary dimension, although the combinato-
rial structure of a Delaunay cell is always reasonably simple, the geometric
structure is generally not. The faces are not usually totally geodesic, and it’s
possible for faces to have unexpected intersections with each other. How-
ever, for arrangements of hyperplanes, we will prove that even the geometric
structure is nice.

Lemma 3.1. Let Π1 and Π2 be disjoint hyperplanes in Dn (represented as c1

and c2 as in Definition 2.1), which are equidistant from the origin. Then the

distance between Π1 and Π2 (in a hyperbolic sense) is cosh−1 |c1|2|c2|2−c1·c2
|c1||c2|

√
1−|c1|2

√
1−|c2|2

.

Proof. The hyperbolic distance from the origin to the hyperplanes is tanh−1 |ci|.
We can form a pentagon from the three points 0, c1, c2, and the two points
at which the common perpendicular to Π1 and Π2 meets Π1 or Π2. All
of the angles in this pentagon will be right angles, except for the angle at
0, which is cos−1 c1·c2

|c1||c2| . The side opposite the angle at 0 is the common

perpendicular to Π1 and Π2, so its length is the distance between the two
planes.

From the trigonometry of hyperbolic pentagons (see, for example, [Fen89]),
the cosh of the length of the common perpendicular is

(
sinh tanh−1 |c1|

) (
sinh tanh−1 |c2|

)
−
(
cosh tanh−1 |c1|

) (
cosh tanh−1 |c2|

) c1 · c2

|c1||c2|

After simplification, we see that the length of the common perpendicular is

cosh−1 |c1|2|c2|2−c1·c2
|c1||c2|

√
1−|c1|2

√
1−|c2|2

. �

Note that if Π1 and Π2 intersect within Hn, then the Lemma fails.

Lemma 3.2. For a hyperplane Π represented as a vector c ∈ Dn (as in

Definition 2.1), π(x)− x =
(
|c|2−x·c
1−x·c

)(
c
|c|2 − x

)
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Proof. From Definition 2.1,

π(x)− x = c +
1− |c|2

1− x · c

(
x− x · c

|c|2
c

)
− x

=

(
|c|2 − x · c

(1− x · c)|c|2

)
c +

(
x · c− |c|2

1− x · c

)
x

=

(
|c|2 − x · c
1− x · c

)(
c

|c|2
− x

)
�

Proposition 3.3. For m ≤ n, let Π1, · · · ,Πm+1 be disjoint hyperplanes
(represented as vectors c1, · · · , cm+1 as in Definition 2.1) which are equidis-
tant from 0 ∈ Dn. Let ∆ be the relative interior of the convex hull of
c1
|c1|2 , · · · ,

cm+1

|cm+1|2 (which will include some points exterior to Dn).

(1) If c1, · · · , cm+1 are in general position, then the open Delaunay cell
associated with Π1, · · · ,Πm+1 is {x ∈ ∆ |x · ci < |ci|2for all i ≤
m+ 1}.

(2) If c1, · · · , cm+1 aren’t in general position, then the open Delaunay
cell is empty.

Proof. Each hyperplane Πi partitions Dn into two components. The com-
ponent containing the origin is {x ∈ Dn |x · ci < |ci|2}. By Lemma 2.5, the

open Delaunay cell is in the same component of Dn −
m+1⋃
i=1

Πi as the origin,

so every point in the Delaunay cell satisfies x · ci < |ci|2 for all i ≤ m+ 1.
By Lemma 2.3, a point x is in the open Delaunay cell if and only if the

multivectors (−1)mj
m∧
i=1

(πj+i(x)− x) are nonzero for all values of j and are

all positive scalar multiples of each other.

(−1)mj
m∧
i=1

(πj+i(x)−x) = (−1)mj

(
m∏
i=1

|cj+i|2 − x · cj+i
1− x · cj+i

)(
m∧
i=1

(
cj+i
|cj+i|2

− x

))
We need not consider any points for which x · cj+i ≥ |cj+i|2. Also,

since x and cj+i are both points in Dn, 1 − x · cj+i > 0. With these

restrictions, the condition that (−1)mj
m∧
i=1

(πj+i(x)−x) are nonzero and are

positive scalar multiples of each other is equivalent to the condition that

(−1)mj
m∧
i=1

(
cj+i

|cj+i|2 − x
)

are all nonzero and are positive scalar multiples of

each other. Thus, x is surrounded by π1(x), · · · , πm+1(x) if and only if x
is surrounded by c1

|c1|2 , · · · ,
cm+1

|cm+1|2 . Rephrasing this statement, x is in the

open Delaunay cell if and only if c1
|c1|2 , · · · ,

cm+1

|cm+1|2 are in general position

and x lies in the relative interior of their convex hull.
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By assumption, all of the ci have the same length. Then the vectors
c1, · · · , cm+1 are in general position if and only if the vectors c1

|c1|2 , · · · ,
cm+1

|cm+1|2
are in general position. �

Corollary 3.4. Given disjoint hyperplanes Π1, · · · ,Πm+1 in Hn which are
equidistant from some point p, their open Delaunay cell is either empty or
m-dimensional.

Theorem 3.5. Let Π1, · · · ,Πm+1 in Hn be disjoint hyperplanes which are
equidistant from some point p. If their closed Delaunay cell is m-dimensional,
then it is a truncated ultra-ideal simplex. Each truncation face is con-
tained in one of the Πi. The truncation faces are perpendicular to all non-
truncation faces (of any dimension) that intersect them.

Proof. Without loss of generality, we may assume that p is placed at 0 in the
Klein model. Represent hyperplane Πi as a vector ci ∈ Dn, as in Definition
2.1. The closed Delaunay cell of Π1, · · · ,Πm+1 is formed by taking the union
of all open Delaunay cells associated with any subset of {Π1, · · · ,Πm+1} and
then taking the closure of that object. Thus, if the closed Delaunay cell is
m-dimensional, the open Delaunay cell associated with Π1, · · · ,Πm+1 must
be m-dimensional, so c1, · · · , cm+1 are in general position. The convex hull
of c1
|c1|2 , · · · ,

cm+1

|cm+1|2 is an m-dimensional simplex in Rn, all of whose vertices

lie outside of Dn. Thus, if we intersect this convex hull with Dn, we obtain
an ultra-ideal simplex in hyperbolic space. Let U be the closure of the

component of Dn−
m+1⋃
i=1

Πi which contains 0. Let T be the intersection with

U of the convex hull of c1
|c1|2 , · · · ,

cm+1

|cm+1|2 . Then T is a truncated ultra-ideal

simplex. We claim that the closed Delaunay cell is T .
By repeated application of Proposition 3.3, the open Delaunay cell asso-

ciated with any proper subset of {Π1, · · · ,Πm+1} is the relative interior of
a face of T , while the open Delaunay cell associated with {Π1, · · · ,Πm+1}
is the interior of T . All faces of T can be achieved in this fashion, except

for the truncation faces, which lie in
m+1⋃
i=1

Πi, and thus aren’t in any open

Delaunay cell. Thus, the union of all open Delaunay cells associated with
any subset of {Π1, · · · ,Πm+1} is T with the truncation faces removed. The
closed Delaunay cell is the closure of this object, so is T .

Let F be a truncation face of T . Without loss of generality, F ⊂ Π1. The
hyperplane Π1 separates c1

|c1|2 from T . The hyperplane Π1 also separates
c1
|c1|2 from the other ci

|ci|2 (since the hyperplanes are disjoint). Thus, if a face

of the convex hull of c1
|c1|2 , · · · ,

cm+1

|cm+1|2 intersects F , it must pass through the

ultra-ideal vertex c1
|c1|2 . Any flat which passes through c1

|c1|2 is perpendicular

to Π1 (in a hyperbolic sense). �

Ushijima refers to such a polytope as a generalized simplex [Ush06].
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Proposition 3.6. Let Π1, · · · ,Πm+1 in Hn be disjoint hyperplanes which
are equidistant from some point p. Let T be their closed Delaunay cell. If

there is any point x ∈ T \
m+1⋃
i=1

Πi at which π1(x), · · · , πm+1(x) aren’t in

general position, then T has dimension less than m.

Proof. Without loss of generality, p = 0 ∈ Dn. Let x ∈ T \
m+1⋃
i=1

Πi be

such that π1(x), · · · , πm+1(x) aren’t in general position. Since x is in the
open Delaunay cell associated with some subset of {Π1, · · · ,Πm+1}, x lies
within the affine hull of π1(x), · · · , πm+1(x), which has dimension less than

m. By Lemma 3.2, πi(x) − x =
(
|ci|2−x·ci

1−x·ci

)(
ci
|ci|2 − x

)
. Since x 6∈

m+1⋃
i=1

Πi,

there is no i for which |ci|
2−x·ci

1−x·ci = 0. Then the points ci
|ci|2 all lie within the

affine hull of π1(x), · · · , πm+1(x), so their affine hull is also of dimension less
than m. Thus, the convex hull of c1

|c1|2 , · · · ,
cm+1

|cm+1|2 has dimension less than

m, so the open Delaunay cell associated with Π1, · · · ,Πm+1 is empty. The
closed Delaunay cell is then the closure of the union of finitely many sets of
dimension less than m, so is itself of dimension less than m. �

Proposition 3.7. Let Π1, · · · ,Πn+1 in Hn be disjoint hyperplanes which are
equidistant from some point p. Let T be their closed Delaunay cell. There

are no points in T \
n+1⋃
i=1

Πi at which the cell has negative orientation.

Proof. As usual, we place p at 0 ∈ Dn and represent each hyperplane Πi as
a vector ci ∈ Dn, as in Definition 2.1. All of the ci are of the same length,
which we denote |c|.

By Lemma 3.1, the distance between Πi and Πj is cosh−1 |c|4−ci·cj
|c|2(1−|c|2)

, so

|c|4−ci·cj
|c|2(1−|c|2)

≥ 1 and thus ci · cj ≤ 2|c|4 − |c|2 < |c|4.

Assume that c1, · · · , cn+1 aren’t in general position. Then c1
|c1|2 , · · · ,

cn+1

|cn+1|2
aren’t in general position. For any x ∈ T , the simplex π1(x) · · ·πn+1(x) lies
within the affine hull of c1

|c1|2 , · · · ,
cn+1

|cn+1|2 . Thus, the simplex π1(x) · · ·πn+1(x)

has volume 0, so the orientation of T isn’t negative at x.
Assume that c1, · · · , cn+1 are in general position. Let x = c1+c2

2|c|2 . The

common perpendicular line to Π1 and Π2 must pass through both c1
|c|2 and

c2
|c|2 , so x is a point on the common perpendicular. Further, since 0 lies

between Π1 and Π2, x does as well. Then x is a point in the open Delaunay
cell associated with Π1 and Π2, so is a point in T . For any i > 2, x · ci =

1
2|c|2 (c1 + c2) · ci < |c|2, so x can’t be a point on any of the Πi. Then

x ∈ T \
n+1⋃
i=1

Πi. Note that x · c1 = x · c2.

The signed volume of the simplex π1(x), · · · , πn+1(x) will vary continu-
ously within T , and by Proposition 3.6, is never zero within the connected
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set T \
n+1⋃
i=1

Πi. Thus, if we can prove that the orientation is positive at x, we’ll

have proved that the orientation is positive everywhere within T \
n+1⋃
i=1

Πi.

To determine the orientation at x, we need to compare the orientation of
the simplex π1(x) · · ·πn+1(x) to the orientation of the simplex c1 · · · cn+1.

We will do this by considering the exterior product
n+1∧
i=2

(πi(x)− π1(x)).

First, we simplify the expression π2(x)− π1(x).

π2(x)− π1(x) = (π2(x)− x)− (π1(x)− x)

=

(
|c|2 − x · c2

1− x · c2

)(
c2

|c|2
− x

)
−
(
|c|2 − x · c1

1− x · c1

)(
c1

|c|2
− x

)
=

(
|c|2 − x · c2

1− x · c2

)((
c2

|c|2
− x

)
−
(

c1

|c|2
− x

))
=
|c|2 − x · c2

|c|2(1− x · c2)
(c2 − c1)

The benefit of this is that it will allow us to remove all other c2−c1 terms
from the exterior product, in effect allowing us to replace all c2 terms with
c1 terms.

Applying this, we compute (c2 − c1) ∧ (π1(x)− x).

(c2 − c1) ∧ (π1(x)− x) = (c2 − c1) ∧
((
|c|2 − x · c1

1− x · c1

)(
c1

|c|2
− x

))
= (c2 − c1) ∧

((
|c|2 − x · c1

1− x · c1

)(
c1

|c|2
− c1 + c2

2|c|2

))
= (c2 − c1) ∧

((
|c|2 − x · c1

1− x · c1

)(
c1 − c2

2|c|2

))
= 0

Finally, we compute
n+1∧
i=2

(πi(x) − π1(x)) and show that it is a positive

scalar multiple of
n+1∧
i=2

(ci − c1).
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n+1∧
i=2

(πi(x)− π1(x)) = (π2(x)− π1(x)) ∧
n+1∧
i=3

(πi(x)− π1(x))

=
|c|2 − x · c2

|c|2(1− x · c2)
(c2 − c1) ∧

n+1∧
i=3

((πi(x)− x)− (π1(x)− x))

=
|c|2 − x · c2

|c|2(1− x · c2)
(c2 − c1) ∧

n+1∧
i=3

(πi(x)− x)

=
|c|2 − x · c2

|c|2(1− x · c2)
(c2 − c1) ∧

n+1∧
i=3

((
|c|2 − x · ci
1− x · ci

)(
ci
|c|2
− x

))

=

(
n+1∏
i=2

|c|2 − x · ci
|c|2(1− x · ci)

)
(c2 − c1) ∧

n+1∧
i=3

(
ci − |c|2x

)
=

(
n+1∏
i=2

|c|2 − x · ci
|c|2(1− x · ci)

)
(c2 − c1) ∧

n+1∧
i=3

(
ci −

c1 + c2

2

)

=

(
n+1∏
i=2

|c|2 − x · ci
|c|2(1− x · ci)

)
(c2 − c1) ∧

n+1∧
i=3

(
ci −

c1 + c1

2

)

=

(
n+1∏
i=2

|c|2 − x · ci
|c|2(1− x · ci)

)
n+1∧
i=2

(ci − c1)

Since x ·ci < |c|2 for all i, we have that
n+1∏
i=2

|c|2−x·ci
|c|2(1−x·ci) > 0 so the simplices

π1(x) · · ·πn+1(x) and c1 · · · cn+1 have the same orientation. �

Theorem 3.8. Let P be a symmetric cocompact arrangement of hyperplanes
in Hn Then almost every point of Hn is in exactly one open n-dimensional
Delaunay cell. In other words, the Delaunay cells tile Hn.

Proof. From [Prz10], we already know that almost every point is in a total
of one open Delaunay cell, although we’re counting negatively oriented cells
negatively, and we’re allowing for a cell to be counted multiple times if it’s
present multiple times. However, by Proposition 3.7, there are no negatively
oriented cells. In order for the total to be one, there must also be no repeated
cells of dimension n. �

4. Density in an orthoscheme

We start with some general results about simplices and then move to
some more specific results about orthoschemes. For the moment, we make
no mention of packings, but will nonetheless define a notion of density. In
the following section, we will use this notion of density to study packings of
collars about hyperplanes in hyperbolic space. We will often need to assign
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a notion of density to objects which are of lower dimension than the space
in which they lie.

Definition 4.1. Let f be a function f : Hn → (0, 1]. Let A0A1 · · ·Ak ⊂ Hn

be a k-dimensional simplex. Let H be a (k−1)-dimensional flat in the affine
hull of A0 · · ·Ak. At each point in Hn, let R denote the distance to H. We
define the density of f over A0 · · ·Ak relative to H to be

δ(A0 · · ·Ak, H, f) =

∫
A0···Ak

sinhn−k RdVk∫
A0···Ak

f sinhn−k RdVk

Usually (though not always), we will choose f and H so f is rotation-
ally symmetric about H and so H does not intersect the relative interior
of A0 · · ·Ak. With these restrictions, δ could be computed by rotating
A0 · · ·Ak about H to form an n-dimensional object S and then comput-

ing δ =

∫
S

dVn∫
S

f dVn
. This is because rotating any point in A0 · · ·Ak about H will

produce an (n−k)-dimensional sphere of radius R. The (n−k)-dimensional

volume of a sphere is proportional to sinhn−k R. The quotient will cancel
the proportionality constant.

Definition 4.2. Let f , A0 · · ·Ak ⊂ Hn, H, and R be defined as in Definition
4.1. Let P be a point on edgeAk−1Ak. Define v(P ) =

∫
A0···Ak−1P

f sinhn−k RdVk.

The function v : Ak−1Ak → [0, v(Ak)] increases as P moves from Ak−1 to
Ak so is a bijection. Through an abuse of notation, we thus also define its
inverse function to be P : [0, v(Ak)]→ Ak−1Ak.

Proposition 4.3. Let f , A0 · · ·Ak ⊂ Hn, and H be defined as in Definition
4.1, with k ≥ 2. In addition, assume that H contains the simplex A0 · · ·Ak−2

and is disjoint from the relative interior of A0 · · ·Ak. Let H ′ be the affine
hull of A0 · · ·Ak−2. Then

δ(A0 · · ·Ak, H, f) =
1

v(Ak)

v(Ak)∫
0

δ(A0 · · ·Ak−2P (v), H ′, f) dv

Proof. As usual, let R denote the distance from a point to H. Within the
affine hull of A0 · · ·Ak, we may establish coordinates akin to cylindrical
coordinates, with ρ representing the distance to H ′ and θ representing the
amount of rotation about H ′ from (one half of) H. At neither Ak−1 nor
Ak can ρ equal zero. Also the θ values at Ak−1 and Ak can’t be the same
(or else A0 · · ·Ak wouldn’t be k-dimensional). Without loss of generality,
we may assume that θ is positive and increasing along edge Ak−1Ak as we
move from Ak−1 to Ak.

For any point in A0 · · ·Ak, if we drop altitudes to H and H ′ and then
connect their basepoints, we will form a right triangle (Figure 1). The
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hypotenuse has length ρ and one of the other edges has length R. The angle
opposite the edge of length R has size θ (or π − θ if θ > π

2 ).

R
ρ

HH'


Figure 1

From the hyperbolic law of sines, we have that sinhR = sin θ sinh ρ. Let
Θ be the value of θ at P (v).

With v and P as in Definition 4.2, we have that v =
∫

A0···Ak−1P (v)

f sinhn−k RdVk.

Naturally, dv
dv = 1. By decomposing A0 · · ·Ak−1P (v) into cross sections of

the form θ =constant, we can also determine that

1 =
dv

dv
=

∫
A0···Ak−2P (v)

(
f sinhn−k R

)(dΘ

dv
sinh ρ

)
dVk−1

Within A0 · · ·Ak−2P (v), θ is fixed. We may factor dΘ
dv out of the integral,

producing

dΘ

dv
=

1∫
A0···Ak−2P (v)

f sinhn−k R sinh ρ dVk−1



12 ANDREW PRZEWORSKI

Similarly, we can compute that the derivative of vδ(A0 · · ·Ak−1P (v), H, f)
is

d(vδ(A0 · · ·Ak−1P (v), H, f))

dv
=

d

dv

 ∫
A0···Ak−1P (v)

sinhn−k RdVk


=

∫
A0···Ak−2P (v)

(
sinhn−k R

)(dΘ

dv
sinh ρ

)
dVk−1

=
dΘ

dv

∫
A0···Ak−2P (v)

sinhn−k R sinh ρ dVk−1

=

∫
A0···Ak−2P (v)

sinhn−k R sinh ρ dVk−1∫
A0···Ak−2P (v)

f sinhn−k R sinh ρ dVk−1

=

sinn−k Θ
∫

A0···Ak−2P (v)

sinhn−k ρ sinh ρ dVk−1

sinn−k Θ
∫

A0···Ak−2P (v)

f sinhn−k ρ sinh ρ dVk−1

=

∫
A0···Ak−2P (v)

sinhn−k+1 ρ dVk−1∫
A0···Ak−2P (v)

f sinhn−k+1 ρ dVk−1

= δ(A0 · · ·Ak−2P (v), H ′, f)

Since lim
v→0+

vδ(A0 · · ·Ak−1P (v), H, f) = 0, we have that

v(Ak)δ(A0 · · ·Ak−1Ak, H, f) =

v(Ak)∫
0

δ(A0 · · ·Ak−2P (v), H ′, f) dv

so

δ(A0 · · ·Ak−1Ak, H, f) =
1

v(Ak)

v(Ak)∫
0

δ(A0 · · ·Ak−2P (v), H ′, f) dv

�

Corollary 4.4. For Q on edge Ak−1Ak,

δ(A0 · · ·Ak−1Q,H, f) =
1

v(Q)

v(Q)∫
0

δ(A0 · · ·Ak−2P (v), H ′, f) dv
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and

δ(A0 · · ·Ak−2QAk, H, f) =
1

v(Ak)− v(Q)

v(Ak)∫
v(Q)

δ(A0 · · ·Ak−2P (v), H ′, f) dv

The order of the vertices in a simplex is irrelevant, so the fact that in the
preceding results we chose a special role for edge Ak−1Ak rather than some
other edge is of no significance.

Definition 4.5. For the remainder of this section, we will assume that there
is some point O ∈ Hn such that f : Hn → (0, 1] is an increasing function of
the distance to O, and thus is rotationally symmetric about O.

Proposition 4.6. Let A1 6= O be a point in Hn. Let P be a point on edge
OA1. Then the following functions are all decreasing as a function of OP .

(1) δ(OP, {O}, f)
(2) δ(PA1, {O}, f)
(3) δ(OP, {A1}, f)
(4) δ(PA1, {A1}, f)

Proof. For 0 ≤ t ≤ OA1, let Q(t) be the point on OA1 which is at a distance
of t to O. Then

δ(OP, {O}, f) =

∫
OP

sinhn−1RdV1∫
OP

f sinhn−1RdV1

=

OP∫
0

sinhn−1 t dt

OP∫
0

f(Q(t)) sinhn−1 t dt

By a Mean Value Theorem argument, this is a decreasing function of OP .
The proofs for the other three functions are similar. �

Orthoschemes are common objects for studying problems related to vol-
ume. They were used by Rogers, Böröczky, and Florian for proving upper
bounds on density for ball packings [BF64, Bör78, Rog58]. Likewise, we will
use orthoschemes to place an upper bound on packings of radius r collars
about hyperplanes in hyperbolic space.

Definition 4.7. An orthoscheme in Hn is a simplex A0A1 · · ·Ak, for k ≤ n
with the property that for all i, the affine hull of A0 · · ·Ai is perpendicular
to the affine hull of Ai · · ·Ak.

Remark 1. Note that for a simplex, the order in which we list the vertices
is irrelevant, but for an orthoscheme, the vertex order matters.
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Proposition 4.8. Let A0 · · ·Ak be an orthoscheme in Hn with the restric-
tion that within its affine hull, the point which is closest to O is A0. Choose
i < k and let P be a point on AiAi+1. Let H be either the affine hull
of A0 · · ·Ai−1Ai+1 · · ·Ak or the affine hull of A0 · · ·AiAi+2 · · ·Ak. Then as
P moves from Ai to Ai+1, the functions δ(A0 · · ·AiPAi+2 · · ·Ak, H, f) and
δ(A0 · · ·Ai−1PAi+1 · · ·Ak, H, f) are decreasing:

Proof. Proposition 4.6 proves the result in the case that k = 1 and A0 = O.
If k = 1 and A0 6= O, then define g : Hn → (0, 1] so g and f agree on
the affine hull of A0A1 and so g is rotationally symmetric about A0. Since
g and f agree on A0A1, we may compute δ using g instead of f . Again,
Proposition 4.6 proves the result.

We proceed by induction on k.
LetR be the distance toH. As in Definition 4.2, let v(P ) =

∫
A0···AiPAi+2···Ak

f sinhn−k RdVk.

Let H ′ be the affine hull of A0 · · ·Ai−1Ai+2 · · ·Ak. Then from Corollary 4.4,
we have that

δ(A0 · · ·AiPAi+2 · · ·Ak, H, f) =
1

v(P )

v(P )∫
0

δ(A0 · · ·Ai−1P (v)Ai+2 · · ·Ak, H ′, f) dv

and

δ(A0 · · ·Ai−1PAi+1 · · ·Ak, H, f) =
1

v(Ai+1)− v(P )

v(Ai+1)∫
v(P )

δ(A0 · · ·Ai−1P (v)Ai+2 · · ·Ak, H ′, f) dv

Then it is enough to show that δ(A0 · · ·Ai−1PAi+2 · · ·Ak, H ′, f) decreases
as P moves from Ai to Ai+1. We break that proof into three cases, depending
on the value of i.

Case 1: Assume that i = 0. Then δ(A0 · · ·Ai−1PAi+2 · · ·Ak, H ′, f) =
δ(PA2 · · ·Ak, H ′, f) where H ′ is the affine hull of A2 · · ·Ak. Let P1 and
P2 be two points on A0A1, with P1 closer to A0 than P2 is to A0 (Figure
2). Let P ′2 be P2 rotated about H ′ so it lies within P1A2 · · ·Ak (Figure 3).
As we rotate P2A2 · · ·Ak about H ′ toward P1A2 · · ·Ak, each point will get

A1

P2
P1

A0

A2 A3⋯Ak

Figure 2

P1

B0

A2 A3⋯Ak

P2'

Figure 3
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closer to A0, and thus closer to O, so the values of f will decrease. Thus,
δ(P ′2A2 · · ·Ak, H ′, f) > δ(P2A2 · · ·Ak, H ′, f). If we extend edge A2P

′
2 past

P ′2 and even past P1, we will eventually find the point B0 on the affine
hull of P1A2 · · ·Ak which is closest to O. Further, B0A2 · · ·Ak is an or-
thoscheme and the points P1 and P ′2 lie on edge B0A2 with P1 closer to
B0 than P ′2 is. Thus, by the induction hypothesis, δ(P1A2 · · ·Ak, H ′, f) >
δ(P ′2A2 · · ·Ak, H ′, f) > δ(P2A2 · · ·Ak, H ′, f).

Case 2: Assume that i = k− 1. Then δ(A0 · · ·Ai−1PAi+2 · · ·Ak, H ′, f) =
δ(A0 · · ·Ak−2P,H

′, f), where H ′ is the affine hull of A0 · · ·Ak−2. Let P1

and P2 be two points on Ak−1Ak, with P1 closer to Ak−1 than P2 is (Fig-
ure 4). Let P ′1 be P1 rotated about H ′ into A0 · · ·Ak−2P2 (Figure 5).

Ak-2

P2P1

A0⋯Ak-3

Ak-1 Ak

Figure 4

Ak-2 P2

A0⋯Ak-3

P1'

Figure 5

Within the affine hull of A0 · · ·Ak, rotation about H ′ won’t change the
value of f , so δ(A0 · · ·Ak−2P1, H

′, f) = δ(A0 · · ·Ak−2P
′
1, H

′, f). By the in-
duction hypothesis applied to the orthoscheme A0 · · ·Ak−2P2, we have that
δ(A0 · · ·Ak−2P2, H

′, f) < δ(A0 · · ·Ak−2P
′
1, H

′, f).
Case 3: Assume that 0 < i < k − 1. Let P1 and P2 be points on AiAi+1,

with P1 closer to Ai than P2 is (Figure 6). Let P ′2 be P2 rotated about H ′

into the affine hull of A0 · · ·Ai−1P1Ai+2 · · ·Ak (Figure 7 - showing one more
dimension than Figure 6). The points P1 and P2 both project into the affine

Ai

P2
P1

A0⋯Ai-1

Ai+1 Ai+2⋯Ak

Figure 6

P1

A0⋯Ai-2

Ai-1

Ai+2⋯Ak
P2'

Figure 7



16 ANDREW PRZEWORSKI

hull of A0 · · ·Ai−1 at Ai−1 and project into the affine hull of Ai+2 · · ·Ak
at Ai+2. The same will be true of the point P ′2. Within the affine hull of
A0 · · ·Ai−1P1Ai+2 · · ·Ak, any point having that property must lie within the
affine hull of Ai−1P1Ai+2. Thus, Ai−1, Ai+2, P1, and P ′2 are coplanar.

The affine hull of P1Ai+2 is closer to Ai−1 than the affine hull of P ′2Ai+2

is. Also, the affine hull of Ai−1P
′
2 is closer to Ai+2 than the affine hull of

Ai−1P1 is. Thus, the edges Ai−1P
′
2 and P1Ai+2 intersect at some point Q

(Figure 8). Note that A0 · · ·Ai−1P1Ai+2 · · ·Ak and A0 · · ·Ai−1P
′
2Ai+2 · · ·Ak

P1

Ai-1 Ai+2

P2'

Q

Figure 8

aren’t necessarily orthoschemes. Applying the induction hypothesis again,

δ(A0 · · ·Ai−1P1Ai+2 · · ·Ak, H ′, f) > δ(A0 · · ·Ai−1QAi+2 · · ·Ak, H ′, f)

> δ(A0 · · ·Ai−1P
′
2Ai+2 · · ·Ak, H ′, f)

= δ(A0 · · ·Ai−1P2Ai+2 · · ·Ak, H ′, f)

�

Theorem 4.9. Let A0 · · ·An and B0 · · ·Bn be two orthoschemes in Hn, with
A0 = B0 = O. Let H be any hyperplane in Hn. If AiAi+1 ≤ BiBi+1 for all
i < n, then δ(A0 · · ·An, H, f) ≥ δ(B0 · · ·Bn, H, f).

Proof. At any given point, let R be the distance to H. Since sinhn−nR =
sinh0R = 1, the value of R is irrelevant, and thus the choice of H is also
irrelevant.

Let m be the smallest i for which AiAi+1 < BiBi+1. If m = n − 1, then
a direct application of Proposition 4.8 completes the proof.

Assume that m < n− 1. Rotate B0 · · ·Bn about O so Ai = Bi for all i ≤
m. RotateB0 · · ·Bn about the affine hull ofA0 · · ·Am soA0 · · ·Am+1Bm+2 · · ·Bn
is an orthoscheme. As in the preceding proof, this forces Am, Am+1, Bm+1

and Bm+2 to be coplanar. AmAm+1Bm+2 and AmBm+1Bm+2 are both or-
thoschemes (right triangles). If they lie on opposite sides of AmBm+2, we
may reflect so they lie on the same side. Then Am+1Bm+2 and AmBm+1

intersect. Call their intersection point Q. Let H be the affine hull of
A0 · · ·AmBm+2 · · ·Bn. Applying Proposition 4.8,

δ(A0 · · ·AmAm+1Bm+2 · · ·Bn, H, f) > δ(A0 · · ·AmQBm+2 · · ·Bn, H, f)

> δ(A0 · · ·AmBm+1Bm+2 · · ·Bn, H, f)

= δ(B0 · · ·BmBm+1Bm+2 · · ·Bn, H, f)

= δ(B0 · · ·Bn, H, f)
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By following this process, we have made one more of the Bi equal to the
corresponding Ai. Edge BmBm+1 has been replaced by edge AmAm+1. Edge
Bm+1Bm+2 has been replaced by edge Am+1Bm+2, which is even longer, so
is still at least as long as edge Am+1Am+2. None of the other BiBi+1 has
been changed. Thus, we may repeat the process, comparing orthoscheme
A0 · · ·An to orthoscheme A0 · · ·AmAm+1Bm+2 · · ·Bn. At each step, the
density increases. We might need to change the choice of H at each step,
but the choice of H is irrelevant, so we are free to do this. �

Proposition 4.10. Let A0 · · ·AkB be an orthoscheme in Hn, with A0 =
O. Let H be the affine hull of A0 · · ·Ak and let H ′ be the affine hull of
A0 · · ·Ak−1. Then δ(A0 · · ·AkB,H, f) > δ(A0 · · ·Ak−1B,H

′, f).

Proof. Let P be a point on AkB and let v be as in Definition 4.2. Then by
Corollary 4.4,

δ(A0 · · ·AkB,H, f) =
1

v(B)

v(B)∫
0

δ(A0 · · ·Ak−1P (v), H ′, f) dv

We have that A0 · · ·Ak−1P (v) is an orthoscheme and that Ak−1P (v) in-
creases with v. The density δ(A0 · · ·Ak−1P (v), H ′, f) is a decreasing func-
tion of v, by Proposition 4.8. The Mean Value Theorem finds some ṽ ∈
(0, v(B)) for which

δ(A0 · · ·AkB,H, f) = δ(A0 · · ·Ak−1P (ṽ), H ′, f) > δ(A0 · · ·Ak−1B,H
′, f)

�

Corollary 4.11. Let A0 · · ·AkB be an orthoscheme in Hn, with A0 = O.
Choose some i < k. Let H be the affine hull of A0 · · ·Ak and let H ′ be the
affine hull of A0 · · ·Ai. Then δ(A0 · · ·AkB,H, f) > δ(A0 · · ·AiB,H ′, f).

Proof. Start with i = k − 1. Use the preceding proposition to repeatedly
decrease i by 1, removing a vertex from the orthoscheme each time. �

5. Density of a packing of collars

In this section, we prove an upper bound on density for packings of radius
r collars about hyperplanes in Hn. We first need to determine some of the
consequences of hyperplanes being a distance of 2r from each other.

Proposition 5.1. Let Π1, · · · ,Πm be disjoint hyperplanes in Hn each of
which is at a distance of at least 2r to all of the others. If v ∈ Hn is a point
which is equidistant from all of the Πi, then the distance from v to any of

the Πi is at least cosh−1

(√
2(m−1)
m cosh r

)
. This value is achievable only if

each of Π1, · · · ,Πm is at a distance of exactly 2r to all of the others and v
lies in their closed Delaunay cell.
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Proof. Represent each Πi as a vector ci ∈ Dn, as in Definition 2.1. Without
loss of generality, we may place v at 0 ∈ Dn. Then |ci| is independent of i.
To simplify the notation, we denote |ci| as |c|. From Lemma 3.1, we have

that for i 6= j, cosh 2r ≤ |c|4−ci·cj
|c|2(1−|c|2)

, so ci · cj ≤ |c|4 − |c|2(1− |c|2) cosh 2r.

0 ≤

∣∣∣∣∣
m∑
i=1

ci

∣∣∣∣∣
2

=

m∑
i=1

|ci|2 + 2
∑
i<j

ci · cj

≤ m|c|2 +m(m− 1)(|c|4 − |c|2(1− |c|2) cosh 2r)

Rearranging the inequality, we get that |c|2 ≥ (m−1) cosh 2r−1
(m−1)(1+cosh 2r) . Then the

distance from v to any of the Πi is

tanh−1 |c| ≥ tanh−1

√
(m− 1) cosh 2r − 1

(m− 1)(1 + cosh 2r)
= cosh−1

(√
2(m− 1)

m
cosh r

)
Since equality comes only when all of the hyperplanes are at a distance

of exactly 2r to each other and
m∑
i=1

ci = 0, we see that the ci form a regular

simplex, with 0 at its center. �

We define lm(r) to be lm(r) = cosh−1

(√
2(m−1)
m cosh r

)
.

Proposition 5.2. For m ≤ n, let Π1, · · · ,Πm,Πm+1 be disjoint hyperplanes
in Hn each of which is at a distance of at least 2r to all of the others. Let F
be the set of points which are equidistant from all of Π1, · · · ,Πm. We assume
that F is nonempty. Let B be the point on F which is closest to Π1 (and
hence to Π2, · · · ,Πm). If B is at least as close to Πm+1 as it is to Π1, then
the distance from B to any of Π1, · · · ,Πm is at least cosh−1

(√
2 cosh r

)
.

Proof. Place B at the origin in Dn. Represent each of the hyperplanes Πi

by a vector ci, as in Definition 2.1. Then |c1| = · · · = |cm| ≥ |cm+1|. Also,
0 lies in the affine hull of c1, · · · , cm, so c1, · · · , cm are linearly dependent.
The set F is the orthogonal subspace to the span of c1, · · · , cm.

Without loss of generality, c1, · · · , cm ∈ Rm−1 ⊂ Rn and cm+1 ∈ Rm ⊆
Rn. Further, we may assume that the mth coordinate of cm+1 is nonnegative.

If we increase the mth coordinate of cm+1, that will increase |cm+1|, but
won’t change the value of ci·cm+1, for i ≤ m. It’s not difficult to prove that if

ci·cm+1 is fixed and |cm+1| is increasing, then cosh−1 |ci|2|cm+1|2−ci·cm+1

|ci||cm+1|
√

1−|ci|2
√

1−|cm+1|2

is increasing, so the distance from Πi to Πm+1 is increasing. Thus, if we in-
crease the mth coordinate of cm+1 until |cm+1| = |c1|, we will still satisfy
the hypotheses of the result we’re trying to prove.
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Thus, we may assume that c1, · · · , cm+1 are points on an m-dimensional
sphere centered at 0 and that c1, · · · , cm lie on the equator of that sphere.
Place a new point cm+2 at (0, 0, · · · , 0,−1). We have placed m + 2 points
on an m-dimensional sphere. A result of Rankin [Ran55] proves that some
two of these points form a central angle (with vertex at 0) which is at most
π
2 .

If all such pairs of points include cm+2, then we may perturb all of
c1, · · · , cm+1 away from cm+2, resulting in no central angles which are less
than or equal to π

2 . This would violate Rankin’s result. Thus, we may as-
sume that there are some i < j < m+ 2 such that ci and cj form a central
angle which is less than or equal to π

2 . As a consequence ci · cj ≥ 0.
Since c1, · · · , cm+1 all have the same length, we denote that length by

|c|. Then |c|4
|c|2(1−|c|2)

≥ |c|4−ci·cj
|c|2(1−|c|2)

≥ cosh 2r. Simplifying this inequality,

we have that 1
1−|c|2 ≥ 2 cosh2 r, so tanh−1 |c| ≥ cosh−1

(√
2 cosh r

)
. The

distance from any of the hyperplanes to 0 is tanh−1 |c|, so we have proved
the result. �

Considering that lim
m→∞

lm(r) = cosh−1
(√

2 cosh r
)
, we call this quantity

l∞(r). Note that l2(r) < l3(r) < · · · < l∞(r).

Definition 5.3. Let Π and V be disjoint hyperplanes in Hn. Let their
common perpendicular line meet Π at point A0 and meet V at point B0.
An orthoprism with base in Π is a polytope A0 · · ·An−1B0 · · ·Bn−1 satisfying
the following conditions.

(1) B0 · · ·Bn−1 is an orthoscheme in V .
(2) For all i, the projection of Bi into Π is Ai.

From these conditions, it follows that A0 · · ·An−1 is an orthoscheme in Π.

Proposition 5.4. Let P be an arrangement of hyperplanes in Hn, all of
which are separated from each other by a distance of at least 2r. Assume
that each Voronoi cell stays within bounded distance of the hyperplane at its
center. Let D be the Voronoi cell associated with hyperplane Π1. Let F0 be
an (n − 1)-dimensional face of D and let B0 be the closest point to Π1 on
the affine hull of F0. Continuing, let Fi be an (n− i−1)-dimensional face of
Fi−1 and let Bi be the closest point to Π1 on the affine hull of Fi. Let Ai be
the projection of Bi into Π1. Then A0 · · ·An−1B0 · · ·Bn−1 is an orthoprism
with base in Π1. Further, we have that AiBi ≥ li+2(r), for all i.

Proof. Each Fi is a face of the Voronoi cell D, so is equidistant from at least
i+ 2 of the hyperplanes in P. Since Fi+1 is on the boundary of Fi, Fi+1 is
equidistant from at least the same hyperplanes as Fi is. Find hyperplanes
Π1, · · · ,Πn+1 ∈ P such that for all i, Fi is equidistant from Π1, · · · ,Πi+2

but not equidistant from Π1, · · · ,Πi+3.
For some k, place Bk at the origin in Dn. Represent each of the Πi as

a vector ci ∈ Dn. All of the ci have the same length. The set of points
equidistant from Π1, · · · ,Πk+2 is the orthogonal subspace to the span of
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c1, · · · , ck+2. The point on this flat which is closest to Π1 is Bk = 0. The
points Bk+1, · · · , Bn−1 all lie in this same orthogonal subspace, since they’re
all equidistant from Π1, · · · ,Πk+2. For i < k, each Bi lies in the span of
c1, · · · , ck+2. Then the affine hull of B0 · · ·Bk is orthogonal to the affine
hull of Bk · · ·Bn−1. This verifies that B0 · · ·Bn−1 is an orthoscheme.

By definition, B0 is the closest point to Π1 within the (n−1)-dimensional
affine hull of F0. Then A0 · · ·An−1B0 · · ·Bn−1 is an orthoprism.

Each of the Bi is equidistant from Π1, · · · ,Πi+2, so the distance from Bi
to Π1 is at least li+2(r). The distance from Bi to Π1 is exactly AiBi, so
AiBi ≥ li+2(r). �

Definition 5.5. Let A0 · · ·An−1B0 · · ·Bn−1 be an orthoprism with base in
the hyperplane Π ∈ Hn. Choose a positive number r ≤ A0B0. Let C be
the collar of radius r about Π. The density of C within the orthoprism is

defined to be Vol(C∩(A0···An−1B0···Bn−1))
Vol(A0···An−1B0···Bn−1) .

Proposition 5.6. Let Π and V be disjoint hyperplanes in Hn. Choose
r > 0 to be at most the distance from Π to V . Let C be the collar of radius
r about Π. Then there is a continuous function f : Π→ (0, 1] such that for
any orthoprism A0 · · ·An−1B0 · · ·Bn−1 with base in Π and B0, · · · , Bn−1 ∈
V , we have that the density of C within A0 · · ·An−1B0 · · ·Bn−1 is given by
δ(A0 · · ·An−1, H, f) (computed within the (n−1)-dimensional space Π). The
n−2 dimensional flat H may be chosen arbitrarily within Π. The function f
is increasing as a function of distance to A0 and is invariant under rotation
within Π about A0.

Proof. There is some function g : Π → (0,∞) such that the volume of
A0 · · ·An−1B0 · · ·Bn−1 is

∫
A0···An−1

g dVn−1. The function g increases as a

function of distance to A0 and is invariant under rotation within Π about
A0. There is some increasing function h : (0,∞) → (0,∞) such that the
volume of C∩(A0 · · ·An−1B0 · · ·Bn−1) is h(r)

∫
A0···An−1

dVn−1. Then the density

of C within the orthoprism is

h(r)
∫

A0···An−1

dVn−1∫
A0···An−1

g dVn−1
=

∫
A0···An−1

dVn−1∫
A0···An−1

g
h(r) dVn−1

Let f = g
h(r) ≤ 1. The hyperplane Π is isometric to Hn−1. Let H be any

(n− 2)-dimensional flat within Π. Let R be the distance from any point in
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Π to H. Then within the (n− 1)-dimensional space Π,

δ(A0 · · ·An−1, H, f) =

∫
A0···An−1

sinh(n−1)−(n−1)RdVn−1∫
A0···An−1

g
h(r) sinh(n−1)−(n−1)RdVn−1

=

∫
A0···An−1

dVn−1∫
A0···An−1

g
h(r) dVn−1

�

Definition 5.7. Let Π1, · · · ,Πn+1 be hyperplanes in Hn, each of which is
at a distance of exactly 2r to the others. Let T be their closed Delaunay
cell, which is a truncated regular ultra-ideal simplex. Let

U = {x ∈ T |x is within a distance of r to at least one of the Πi}
Then U is a collar of radius r about the truncation faces of T . Define
dn(r) = Vol(U)

Vol(T ) .

Proposition 5.8. Let A0 · · ·An−1B0 · · ·Bn−1 be an orthoprism in which
AmBm = lm+2(r) for all m. Let C be a collar of radius r about the base of
the orthoprism. Then the density of C within the orthoprism is dn(r).

Proof. For a fixed r, any two such orthoprisms are congruent. Thus, it is
sufficient to prove that one such orthoprism has density dn(r).

Let Π1, · · · ,Πn+1 be n+1 hyperplanes in Hn, such that distance between
any two of them is always 2r. In Dn, we may represent Πi as a vector ci, as
in Definition 2.1. Then the vectors c1, · · · , cn+1 form a regular simplex. Fur-
ther, by Theorem 3.5 the closed Delaunay cell T of Π1, · · · ,Πn+1 is the ultra-
ideal simplex with vertices c1

|c1|2 , · · · ,
cn+1

|cn+1|2 with the (ultra-ideal) vertices

truncated by the hyperplanes Π1, · · · ,Πn+1. The Euclidean simplex with
vertices c1

|c1|2 , · · · ,
cn+1

|cn+1|2 may be decomposed into congruent orthoschemes,

all of which will have 0 as a vertex. If a face of one of these orthoschemes is
transverse to Πi, then that face passes through ci

|ci|2 , so is (hyperbolically)

perpendicular to Πi. Thus, this decomposition of the simplex into congru-
ent orthoschemes induces a decomposition of T into congruent orthoprisms.
Thus, the density within the orthoprisms is dn(r).

All that remain to be proven is that the vertices are at a distance of
lm+2(r) from the hyperplanes Πi. Let c1

|c1|2B0B1 · · ·Bn−1 be one of the or-

thoschemes (with Bn−1 = 0). Then vertex Bm is (in a Euclidean sense)
equidistant from m + 2 of the c1

|c1|2 , · · · ,
ci+1

|ci+1|2 , without loss of generality,
c1
|c1|2 , · · · ,

cm+2

|cm+2|2 . Further Bm lies in the convex hull of c1
|c1|2 , · · · ,

cm+2

|cm+2|2 .

Thus Bm is (hyperbolically) equidistant from Π1, · · · ,Πm+2 and Bm lies
within the affine hull of π1(Bm), · · · , πm+2(Bm).

Then the hyperbolic distance from Bm to Π1 is lm+2(r). �
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Proposition 5.9. Let A0 · · ·An−1B0 · · ·Bn−1 be an orthoprism in Hn. Let r
be such that AiBi ≥ li+2(r) for all i. Let C be the collar of radius r about the
base of the orthoprism. Then the density of C within A0 · · ·An−1B0 · · ·Bn−1

is at most dn(r).

Proof. Let Π be the affine hull of A0 · · ·An−1. If A0B0 > l2(r) = r, then
find some hyperplane V ⊂ Hn such that

(1) V contains B1 · · ·Bn−1

(2) V intersects A0B0 at some point B̃0

(3) the distance from V to Π is r.

Let B′0 be the point in V which is closest to Π and let A′0 be the point in
Π which is closest to V (Figure 9). Then A′0A1 · · ·An−1B

′
0B1 · · ·Bn−1 is an

orthoprism. The point A0 lies on edge A′0A1 and the point B̃0 lies on edge
B′0B1.

A1

B1

A0

B0

A2⋯An-1

B2⋯Bn-1

A0'

B0
~

B0'

Figure 9

The density of C within A0 · · ·An−1B̃0B1 · · ·Bn−1 is obviously greater
than the density of C within A0 · · ·An−1B0 · · ·Bn−1. Use Proposition 5.6
to find the function f : Π → (0,∞) such that the density of C within
A′0A1 · · ·An−1B

′
0B1 · · ·Bn−1 is δ(A′0A1 · · ·An−1, H, f), where H is an arbi-

trary (n− 2)-dimensional flat within Π.
Applying Proposition 4.8, δ(A′0A1 · · ·An−1, H, f) > δ(A0A1 · · ·An−1, H, f).

We have found a new orthoprism A′0A1 · · ·An−1B
′
0B1 · · ·Bn−1 which still

satisfies the hypotheses of the proposition we’re trying to prove. The collar
C has higher density within this new orthoprism than within the original
orthoprism A0 · · ·An−1B0 · · ·Bn−1. Further, A′0B

′
0 = l2(r) = r.

If AiBi = li+2(r) for all i > 0, then we have proved the result. Otherwise,
find the smallest i for which AiBi > li+2(r). If we were to move Ai closer
to A′0 (while also moving Bi ∈ V so as to maintain the requirements for an
orthoprism), that would decrease AiBi. Thus, if we applied Theorem 4.9 to

decrease Ai−1Ai (or A′0A1 in the case that i = 1) we would decrease A′0Ai
and thus also decrease AiBi. While doing this, density increases. We may
repeat the application of Theorem 4.9 to ensure that AiBi = li+2(r) for all
i > 0.
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At the end of this process, we will have produced an orthoprism of the
type described in Proposition 5.8, which will have density at least as large
as the original orthoprism. �

Theorem 5.10. Let P be an arrangement of hyperplanes in Hn, each of
which is at a distance of at least 2r to all of the others. Let C be a collar
about one of the hyperplanes and let D be the Voronoi cell associated with
that hyperplane. Then the density of C within V is at most dn(r).

Proof. Let Π1 be the chosen hyperplane. Let F0 be an (n− 1) dimensional
face of D. Then F0 is equidistant from Π1 and one other hyperplane in P.
Let B0 be the point closest to Π1 in the affine hull of F0. By Proposition
5.2, if B0 6∈ F0, then every point of F0 is at a distance of at least l∞(r) to
Π1. Since l∞(r) > ln+1(r), dn(r) is an upper bound on the density of C
within the solid formed by taking the convex hull of F0 and its projection
into Π1. Thus, we assume that B0 ∈ F0. Let A0 be the projection of B0

into Π1.
Assume that we have found F0, · · · , Fk and B0, · · · , Bk such that

(1) Each Fi is an (n − i − 1)-dimensional face of D and Fi lies on the
boundary of Fi−1.

(2) Each Bi is the point closest to Π1 on the affine hull of Fi.
(3) For all i, Bi ∈ Fi.

Let Ai be the projection of Bi into Π1. Then for all i, AiBi ≥ li+2(r).
If k < n − 2, then choose any (n − k − 2)-dimensional cell Fk+1 on the

boundary of Fk. Let Bk+1 be the point closest to Π1 on the affine hull of
Fk+1. There are two cases to consider.

Case 1: Assume that every point on Fk+1 is at a distance of at least
l∞(r) > ln+1(r) from Π1. We can decompose the convex hull of (B0 · · ·Bk)∪
Fk+1 into two pieces, a piece K consisting of points that are within l∞(r)
of Π1 and a piece L consisting of points that are at a distance greater than
l∞(r) to Π1. Taking the convex hull of L and its projection into Π1 produces
a region in which C has density less than dn(r).

Let P be any point on the boundary between K and L. All points on the
boundary between K and L are at the same distance to B0 · · ·Bk as P is.
Thus, the region K could be formed by partial rotation of B0 · · ·BkP about
B0 · · ·Bk.

Let Q be the projection of P into Π1. If we form a solid body S by
taking the convex hull of K and its projection into Π, we could compute the
density of C within S by computing δ(A0 · · ·AkQ,H, f) where H is the affine
hull of A0 · · ·Ak. For all i, AiBi ≥ li+2(r). Also, PQ = l∞(r) > ln+1(r).
By Corollary 4.11, the density of C within S is less than the density of f
over any orthoscheme A0 · · ·AkAk+1 · · ·An−2Q. In particular, by choosing
Ak+1 through An−2 to be far enough from A0, we could form an orthoprism
satisfying the hypotheses of Proposition 5.9. Thus, the density of C within
S is at most dn(r).
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Case 2: Assume Fk+1 contains points whose distance to Π1 is at most
l∞(r). Then by Proposition 5.2, Bk+1 ∈ Fk+1.

We can continue this process until it terminates. When it terminates,
either we’ve reached the Case 1 (so the density is at most dn(r)) or we’ve
reached k = n − 2. If k = n − 2, then find Fn−1 in the boundary of Fn−2.
Fn−1 will be 0-dimensional and might lie on ∂Hn. Of course, Bn−1 = Fn−1.
Also, if Fn−1 ∈ Hn, then Fn−1 is equidistant from at least n + 1 of the
hyperplanes in P. Let An−1 be the projection of Fn−1 into Π1. Regardless
of whether Bn−1 is in Hn or ∂Hn, An−1Bn−1 ≥ ln+1(r).

We’ve found B0 · · ·Bn−1 satisfying the hypotheses of Proposition 5.4 so
A0 · · ·An−1B0 · · ·Bn−1 is an orthoprism in which AiBi ≥ li+2(r) for all i.
By Proposition 5.9, the density of C within this orthoprism is at most dn(r).

We can decompose the entire cell D into pieces of the types created in
Case 1 or Case 2. In all cases, then density of C within a given piece is at
most dn(r). Thus, the density of C within D is at most dn(r). �

Corollary 5.11. For packings of radius r collars about hyperplanes in Hn,
the density is at most dn(r).

As usual, it possible that for some packings, the density won’t be well-
defined. Naturally, Corollary 5.11 wouldn’t apply in those cases.

For most values of r, there’s no reason to believe that this bound is sharp.
However, for some values of r, the bound will be sharp. If all of the dihedral
angles in the polytope T (constructed in Definition 5.7) are submultiples of
π, then we could tile Hn with copies of T , producing an optimal packing.

Also, although we conjecture that dn(r) is an increasing function of r,
we make no effort to prove it. If dn(r) is increasing as a function of r,
then Böröczky’s density bound for horoball packing [Bör78] is also a density
bound for packings of collars about hyperplanes.
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