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Abstract. We show that in a closed orientable hyperbolic 3-manifold,

any maximal embedded tube of radius r contains a ball of a certain

radius. We then use the fact that most closed orientable hyperbolic

3-manifolds contain tubes of radius log 3

2
to provide a universal lower

bound on the radius of the ball.

1. Introduction

In this paper we describe a technique for �nding an embedded ball which
lies within a maximal embedded tube in a closed orientable hyperbolic 3-
manifold. This is done by placing a point at a suitable location within the
tube and then considering the closest translate of the point by the action
along the geodesic at the core of the tube. The main result is a lower
bound on the radius of an embedded ball in a closed orientable hyperbolic
3-manifold.

We start with some notation and the relevant prior results. Let � �
PSL2(C ) be the fundamental group of a compact orientable hyperbolic 3-
manifold M . Choose  2 � corresponding to a geodesic g in M . Through
a large computer search, Gabai, Meyerho�, and Thurston [GMT03] have

shown that there is a tube of radius at least log 3

2
about the shortest geodesic

unless M satis�es one of a few exceptional conditions. Suppose there is a
maximal tube of radius r about g. Gehring and Martin [GM98] show that
this tube has volume at least

V (r) =
p
3 tanh r cosh 2r

�
sinh�1

�
sinh r

cosh 2r

��2
:

Lifting the tube to H
3 , the universal cover of M , we have a maximal tube

of radius r about a line. Then  corresponds to an isometry of H 3 which
may be chosen to have this line as its axis. Let the complex length of  be
l + i�. Then a portion of the tube of length l maps bijectively to the tube
in M . Such a portion of a tube has volume �l sinh2 r. Hence we see that

l � V (r)

� sinh2 r
. We also use a result of Meyerho� [Mey87] concerning radii of

tubes.
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Proposition 1.1 ([Mey87]). If k = cosh l� cos � <
p
2� 1, then there is a

tube of radius R about g where R is given by

sinh2R =
1

2

�p
1� 2k

k
� 1

�
:

Further, R is a decreasing function of k.

From this, it follows that R will be bigger than r if k is too small. Let
k(r) denote the value of k which would yield a tube of radius r. Then k(r)
is decreasing in r.

We consider a ball contained within the tube. By requiring that the ball
actually touch the boundary of the tube and that it touch some translate of
itself under the action of <  >, we obtain the largest possible ball which �ts
inside the tube. It is in this process that we use the estimates provided by
[GM98] and [Mey87]. We then produce an expression which determines the
radius of the ball given the radius of the tube. This expression is then shown
to be increasing in r. As most closed hyperbolic 3-manifolds are known to

contain tubes of radius log 3

2
, we then have

Theorem 2.12. Any closed orientable hyperbolic 3-manifold contains a ball
of radius 0:175 : : :

There is a comparable result of Friedland [Fri96] which locates embedded
balls of radius 0:17 in noncompact hyperbolic 3-manifolds. Higher dimen-
sional results are also developed.

There are earlier results of this nature, such as [Mey87] and [Wat84].
A universal lower bound on the radius of an embedded ball in hyperbolic
3-manifolds provides evidence for the value of the Margulis number (see
[Thu78]).

We note that since this article was originally written, various components
have been superseded. Gehring and Martin's result [GM98] has been im-
proved. See [Prz03], [GMM01], and [MM03]. Presumably, one could use one
of these results in place of [GM98] to improve our result. The basic outline
would remain the same, although the computations would have to be redone
(and would be considerably more complicated). However, it seems unlikely
that such an approach would produce a result stronger than [Prz01], which
uses a di�erent approach to (among other things) locate a ball of radius

sinh�1 1
4
� 0:247 in any closed orientable hyperbolic 3-manifold.

2. A Ball in a Tube

Proposition 2.1. A maximal tube of radius r about a geodesic contains a

ball of radius d
2
where d is given by

k(r) =
cosh d� cosh V (r)

� sinh2 r

sinh2(r � d
2
)

:
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Proof. Consider the action of  on H
3 . Let P be a point at a distance of

t < r from the axis of . Then

cosh d(P; n(P )) = coshnl+ sinh2 t(coshnl� cosn�):

We wish to �nd the largest ball which is contained in the tube. If the largest
ball centered at P has radius less than r � t, then we can achieve a larger
ball by centering it about a point P 0 which is farther away from the axis.
Also, if the radius of the ball is less than 1

2
min
n2Z+

d(P; n(P )) then we can

achieve a larger ball by choosing it about a point P 0 which is closer to the
axis than P , except when P is already on the axis. If the axis is the optimal
location for P , then it must be the case that a ball of radius r embeds
in the tube. Since this is much stronger than the result we are trying to
prove, we ignore this case. Hence we assume that the radius of the ball is
r � t = 1

2
min
n2Z+

d(P; n(P )).

Let n be the positive integer which minimizes d(P; n(P )) and let dn =

d(P; n(P )) = 2(r � t). With this de�nition, t = r � dn
2
and

cosh dn = coshnl + sinh2(r � dn

2
)(coshnl � cosn�)

� cosh
V (r)

� sinh2 r
+ sinh2(r � dn

2
)(coshnl � cosn�)

leading to the inequality

kn = coshnl � cosn� �
cosh dn � cosh V (r)

� sinh2 r

sinh2(r � dn
2
)

From our earlier discussion, it follows that if

kn �
cosh dn � cosh

V (r)

� sinh2 r

sinh2(r � dn
2
)

< k(r)

then we have a tube of radius greater than r, contradicting the maximality
of r. Hence, we have that

0 < k(r) �
cosh dn � cosh

V (r)

� sinh2 r

sinh2(r � dn
2
)

:

It is easy to see that
cosh dn � cosh

V (r)

� sinh2 r

sinh2(r � dn
2
)

is increasing in dn for 0 <

V (r)

� sinh2 r
� l � dn < 2r. Hence there is some minimal value d of dn for which

k(r) =
cosh d� cosh

V (r)

� sinh2 r

sinh2(r � d
2
)

:

As dn � d, any maximal tube of radius r about a geodesic must contain a
ball of radius at least d

2
. �
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Given a particular value for r, it is a simple matter to solve for d. It
would seem intuitive that a larger radius tube could �t a larger radius ball,
but a larger radius tube may have a shorter length. Thus, we need to verify
that d increases as a function of r. First, we develop a more manageable
means of determining d.

Proposition 2.2. d(r) is determined by the equation

0 = a(r) tanh2
d

2
+ tanh

d

2
+ c(r)

where a(r) =
(1 + cosh

V (r)

� sinh2 r
� k

2
cosh 2r � k

2
)

k sinh 2r
and

c(r) =
(1� cosh

V (r)

� sinh2 r
� k

2
cosh 2r + k

2
)

k sinh2r
.

Proof. We start with the de�nition of d.

k(r) =
cosh d� cosh V (r)

� sinh2 r

sinh2(r � d
2
)

Cross multiplying and applying half and double angle formulas, we get

1 + 2 sinh2
d

2
� cosh

V (r)

� sinh2 r
=

k

2
(cosh(2r � d)� 1)

=
k

2
(cosh 2r cosh d� sinh 2r sinhd� 1)

=
k

2
((2 sinh2

d

2
+ 1) cosh 2r � 2 sinh

d

2
cosh

d

2
sinh2r � 1):

Now, collecting like terms and introducing the equality 1 = cosh2 d
2
�

sinh2 d
2
, we get

0 = (2� k cosh 2r) sinh2
d

2

+k sinh
d

2
cosh

d

2
sinh2r + 1� cosh

V (r)

� sinh2 r
� k

2
cosh 2r +

k

2

0 = (2� k cosh 2r) sinh2
d

2
+ k sinh

d

2
cosh

d

2
sinh2r

+(cosh2
d

2
� sinh2

d

2
)(1� cosh

V (r)

� sinh2 r
� k

2
cosh 2r +

k

2
)

0 = (1 + cosh
V (r)

� sinh2 r
� k

2
cosh 2r � k

2
) sinh2

d

2
+ k sinh

d

2
cosh

d

2
sinh2r

+(1� cosh
V (r)

� sinh2 r
� k

2
cosh 2r +

k

2
) cosh2

d

2
:

Next, we divide by k sinh2r cosh2 d
2
.
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0 =
(1 + cosh

V (r)

� sinh2 r
� k

2
cosh 2r � k

2
)

k sinh2r
tanh2

d

2
+ tanh

d

2

+
(1� cosh

V (r)

� sinh2 r
� k

2
cosh 2r + k

2
)

k sinh2r

�

In order to show that d increases with r, we will need some computational
lemmas. We start by developing some properties of k(r).

Lemma 2.3. The following identities hold:

(1) k cosh 2r =
p
1� 2k

(2) k sinh2r =
p
1� 2k � k2

(3) k cosh2 r =
p
1�2k+k
2

.

Proof. Each follows immediately from the relation

sinh2 r =
1

2

�p
1� 2k

k
� 1

�
:

�

We note that if x is de�ned to satisfy ax2+x+c = 0 then
dx

dr
= �a0x2 + c0

2ax+ 1
and hence we prove

Lemma 2.4. a(r) > 0

Proof.

a(r) =
1� 1

2

p
1� 2k � k

2
+ cosh

V (r)

� sinh2 rp
1� 2k � k2

> 0

since k <
p
2� 1 < 1

2
. �

Lemma 2.5. The function
1� k

2
cosh 2r

k sinh2r
is decreasing in r.

Proof.

1� k
2
cosh 2r

k sinh2r
=

1� 1
2

p
1� 2kp

1� 2k � k2

which is increasing as a function of k. Since k is decreasing with r, this
expression is also decreasing with r. �

Proposition 2.6. If 0:173 < x < 1 and r � log 3

2
then

a0x2 + c0 � (1� x2)

 
1:06� cosh

V (r)

� sinh2 r

k sinh 2r

!0
:
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Proof.

a0x2 + c0 =

 
1� k

2
cosh 2r

k sinh2r

!0
(x2 + 1) +

 
cosh

V (r)

� sinh2 r
� k

2

k sinh2r

!0
(x2 � 1)

= (1� x2)

2
4
 
1� k

2
cosh 2r

k sinh2r

!0
1 + x2

1� x2
�
 
cosh

V (r)

� sinh2 r
� k

2

k sinh 2r

!035
As (1� x2) � 0, we may disregard it.

Continuing, 
1� k

2
cosh 2r

k sinh2r

!0
1 + x2

1� x2
�
 
cosh

V (r)

� sinh2 r
� k

2

k sinh 2r

!0

<

 
1� k

2
cosh 2r

k sinh2r

!0
1 + 0:1732

1� 0:1732
�
 
cosh

V (r)

� sinh2 r
� k

2

k sinh2r

!0

< 1:06

 
1� k

2
cosh 2r

k sinh 2r

!0
�
 
cosh

V (r)

� sinh2 r
� k

2

k sinh2r

!0

=

 
1:06 � cosh

V (r)

� sinh2 r

k sinh2r

!0
+

1

2

�
1� 1:06 cosh 2r

sinh2r

�0
:

It is a matter of elementary calculus to see that the second term is negative

when r � log 3

2
. �

We now focus our e�orts on proving that
1:06 � cosh

V (r)

� sinh2 r

k sinh2r
is decreasing.

We achieve this by breaking it up into successively simpler functions. First,
the de�nition of V (r) is somewhat complicated. We de�ne a similar function

~V (r) =
p
3 tanh r cosh 2r

�
sinh r

cosh 2r

�2
=
p
3
tanh r sinh2 r

cosh 2r
:

It is clear that ~V (r) > V (r). We will require a further result concerning
these functions.

Proposition 2.7. Both
~V (r)

� sinh2 r
and

V (r)

� sinh2 r
are decreasing for r � log 3

2
.

Proof. It is easy to see that
~V (r)

� sinh2 r
=

p
3 tanh r

� cosh 2r
achieves its largest value

of 0:165 : : : when cosh 2r = 1+
p
5

2
and is decreasing for any larger value of r.

We now work with
V (r)

� sinh2 r

V (r)

� sinh2 r
=

2
p
3

�
coth 2r

�
sinh�1(

sinh r

cosh 2r
)

�2
:
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This is obviously decreasing whenever
sinh r

cosh 2r
is. Thus, we suppose that

sinh r

cosh 2r
is increasing. Then

V (r)

� sinh2 r
=

V (r)

~V (r)

~V (r)

� sinh2 r
=

 
sinh�1( sinh r

cosh 2r
)

sinh r
cosh 2r

!2 ~V (r)

� sinh2 r

is decreasing. �

We now, in e�ect, replace V with ~V .

(1)
1:06 � cosh

V (r)

� sinh2 r

k sinh2r
=

1:06 � cosh
~V (r)

� sinh2 r

k sinh2r
+
cosh

~V (r)

� sinh2 r
� cosh

V (r)

� sinh2 r

k sinh2r

Consider the �rst term of the right side of (1).

1:06 � cosh
~V (r)

� sinh2 r

k sinh2r
=

�
1

2k cosh2 r

�"
(coth r)(1:06 � cosh

~V (r)

� sinh2 r
)

#

From Lemma 2.3, we see that

1

2k cosh2 r
=

1p
1� 2k + k

which is increasing in k so decreasing in r. The other part of this expression
requires more work.

Lemma 2.8. The function (coth r)(1:06� cosh
~V (r)

� sinh2 r
) is decreasing when

r � log 3

2
.

Proof.

d

dr

"
(coth r)(1:06 � cosh

~V (r)

� sinh2 r
)

#
= � csch2 r

 
1:06� cosh

 p
3

�

tanh r

cosh 2r

!!

�
p
3

�
coth r sinh

 p
3

�

tanh r

cosh 2r

!�
cosh 2r sech2 r � 2 tanh r sinh 2r

cosh2 2r

�

= csch2 r

"
�1:06 + cosh

 p
3

�

tanh r

cosh 2r

!

�
p
3

�
tanh r sinh

 p
3

�

tanh r

cosh 2r

!�
cosh 2r � sinh2 2r

cosh2 2r

�#

Since
~V (r)

� sinh2 r
=

p
3 tanh r

� cosh 2r
is decreasing for r � log 3

2
we have

cosh

 p
3 tanh r

� cosh 2r

!
< 1:014 and sinh

 p
3 tanh r

� cosh 2r

!
< 1:005

p
3 tanh r

� cosh 2r
.
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Since cosh 2r � sinh2 2r < 0 for r � log 3

2
we have

d

dr

"
coth r(1:06 � cosh

~V (r)

� sinh2 r
)

#

< csch2 r

�
�1:06 + 1:014 � 1:005 � 3

�2
tanh2 r

cosh 2r � sinh2 2r

cosh3 2r

�

< csch2 r

�
�1:06 + 1:014 + 1:005 � 3

�2
tanh2 r sinh2 2r

cosh3 2r

�

= csch2 r

�
�1:06 + 1:014 + 1:005 � 3

�2
cosh 2r � 1

cosh 2r + 1
� cosh

2 2r � 1

cosh3 2r

�

= csch2 r

�
�1:06 + 1:014 + 1:005 � 3

�2
(cosh 2r � 1)2

cosh3 2r

�

� csch2 r

�
�1:06 + 1:014 + 1:005 � 3

�2
� 4

27

�
< 0

as
(y�1)2

y3
� 4

27
when y � 1. �

We now turn our attention to the second term of (1).

Proposition 2.9. The function

cosh
~V (r)

� sinh2 r
� cosh

V (r)

� sinh2 r

k sinh2r

is decreasing for r � log 3

2
.

Proof.

cosh
~V (r)

� sinh2 r
� cosh

V (r)

� sinh2 r

k sinh2r
=

cosh
~V (r)

� sinh2 r
� cosh

V (r)

� sinh2 r
~V (r)

� sinh2 r
� V (r)

� sinh2 r

�
~V (r)� V (r)

�k sinh2r sinh2 r

It is easy to see that
cosh u1 � cosh u2

u1 � u2
is decreasing if u1 and u2 are. Thus,

we're left with only

~V (r)� V (r)

�k sinh2r sinh2 r
:

If
sinh r

cosh 2r
is decreasing, then we have

~V (r)� V (r)

�k sinh2r sinh2 r
=

~V (r)

� sinh2 r
� 1

k sinh2r
�

0
@1�

 
sinh�1( sinh r

cosh 2r
)

sinh r
cosh 2r

!2
1
A
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which is decreasing. Thus, we assume
sinh r

cosh 2r
is increasing.

~V (r)� V (r)

�k sinh2r sinh2 r
=

~V (r)

� sinh2 r
�
 �

sinh r
cosh 2r

�2
k sinh2r

! �
sinh r
cosh 2r

�2 � �sinh�1 sinh r
cosh 2r

�2
�
sinh r
cosh 2r

�4
!

The �rst term
~V (r)

� sinh2 r
is known to be decreasing. The second term is

�
sinh r
cosh 2r

�2
k sinh 2r

=

�
sinh r
cosh 2r

�2
coth 2r

k sinh2r coth 2r
=

1

2
p
3
�

~V (r)

sinh2 r
� 1

k cosh 2r

which is decreasing. Finally the last term is of the form
u2 � (sinh�1 u)2

u4
which is decreasing in u and hence in r. �

Proposition 2.10. The function d(r) is increasing for r � log 3

2
.

Proof. To determine d(r) we must solve an expression of the form a(r)x2 +

x + c(r) = 0 where x = tanh d
2
. To see that x is increasing in r, we dif-

ferentiate with respect to r yielding
dx

dr
= �a0x2 + c0

2ax+ 1
. When r = log 3

2
,

x = 0:173896 : : :. If we can show that
dx

dr
> 0 when x > 0:173 then it will

follow that
dx

dr
> 0 if r � log 3

2
. Hence we may assume x > 0:173. As a and

x are known to be positive and

a0x2 + c0 � (1� x2)

 
1:06 � cosh

V (r)

� sinh2 r

k sinh 2r

!0
� 0

it follows that x, and hence d, is an increasing function of r. �

Corollary 2.11. Any tube of radius r � log 3

2
about a geodesic contains a

ball of radius at least 1
2
d( log 3

2
) = 0:175 : : :

Theorem 2.12. Any closed orientable hyperbolic 3-manifold contains a ball

of radius 0:175 : : :

Proof. In [GMT03] it is shown that the shortest geodesic in the manifold
has a tube of radius at least 0:52955 or the manifold is Vol3. Further, it is

shown that if the tube radius is less than log 3

2
then the geodesic has length

at least 1:0595. We have established the result in the case where the tube
radius is at least log 3

2
. Vol3 is known to contain a ball of radius 0:527 : : :.

A tube of radius 0:52955 and length at least 1:0595 � 2 � 0:52955 contains a
ball of radius 0:52955 �
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